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Abstract 

During our daily lives, we often learn about the similarity of the traits and preferences of others 

to our own and use that information during our social interactions. However, it is unclear how 

the brain represents similarity between the self and others. One possible mechanism is to track 

similarity to oneself regardless of the identity of the other (Similarity account); an alternative 

is to track each other person in terms of consistency of their choice similarity with respect to 

the choices they have made before (consistency account). Our study combined fMRI and 

computational modelling of reinforcement learning to investigate the neural processes that 

underlie learning about preference similarity. Participants chose which of two pieces of artwork 

they preferred and saw the choices of one agent who usually shared their preference and another 

agent who usually did not. We modelled neural activation with reinforcement learning models 

based on the similarity and consistency accounts. Our results showed that activity in brain areas 

linked to reward and social cognition followed the consistency account. Our findings suggest 

that impressions of other people can be calculated in a person-specific manner which assumes 

that each individual behaves consistently with their past choices. 
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1. Introduction  

The ability to rapidly form and update our impressions about other people is a vital skill 

in navigating our complex social world. During our daily lives, we frequently learn about the 

traits and preferences of other people and use that information to inform our social interactions. 

However, the neural mechanisms which govern our learning of the relationship between our 
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preferences and those of others are currently unclear. The current study investigated these 

mechanisms by combining fMRI and computational modelling. 

Researchers investigating impression formation have sought to determine which brain 

areas respond when we learn about other people and when our expectations of others are 

violated. Most have done this by providing participants with some information about a novel 

person and then presenting either consistent information which confirms the previous 

impression or inconsistent which requires participants to update their impressions. These 

studies have shown increased activity in regions like the precuneus/posterior cingulate cortex 

(PCC), the temporal-parietal junction (TPJ) and the dorsomedial prefrontal cortex (dmPFC) 

when receiving inconsistent vs. consistent information about another person’s moral behaviour 

(Hughes, Zaki, & Ambady, 2017; Mende-Siedlecki, Baron, & Todorov, 2013; Mende-

Siedlecki & Todorov, 2016), competence (Ames & Fiske, 2013; Bhanji & Beer, 2013), traits 

(Hackel, Doll, & Amodio, 2015; Ma et al., 2012; Van der Cruyssen, Heleven, Ma, 

Vandekerckhove, & Van Overwalle, 2015), and political beliefs (Cloutier, Gabrieli, Young, & 

Ambady, 2011). These regions are key nodes in the “mentalising” network which is activated 

when thinking about the beliefs, preferences and intentions of others (Adolphs, 2009; Frith & 

Frith, 2012; Schilbach, 2015; Van Overwalle, 2009).  

The increased activation to inconsistent information seen in the mentalising network is 

reminiscent of the prediction error (PE) signal seen in reinforcement learning (RL) models. 

These signals compute the expectation of a future outcome (or reward) as being a function of 

the current expectation plus the product of the learning rate and the PE, i.e. the difference 

between the last expected and actual outcome (Behrens, Hunt, & Rushworth, 2009; Ruff & 

Fehr, 2014). Reinforcement learning models have been shown to be biologically plausible both 

at the neuro-chemical level, where the pattern of midbrain dopamine neuron response matches 
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that of reward PEs (Schultz, 2016), and at the level of whole brain anatomy (Botvinick, Niv, 

& Barto, 2011). This biological plausibility along with the findings outlined above have led 

researchers to suggest that regions in the mentalising network may be involved in calculating 

social prediction errors (Hertz et al., 2017; Mende-Siedlecki, Cai, & Todorov, 2013; Wittmann, 

Lockwood, & Rushworth, 2018).  

Several studies have investigated this possibility directly, using computational 

modelling to parametrically track prediction error from trial to trial and have found evidence 

of social prediction error tracking in the dmPFC, the anterior cingulate cortex (ACC), the TJP, 

the STS, the medial temporal gyrus (MTG), ventrolateral PFC (vlPFC) and the precuneus 

(Behrens, Hunt, Woolrich, & Rushworth, 2008; Hackel et al., 2015; Lockwood et al., 2018; 

Stanley, 2016). A recent study by Wittmann et al. (2016) examined the related phenomenon of 

self-other mergence, in which knowledge about another person’s performance reciprocally 

influences judgements of one’s own performance. They found a division between PEs for self-

performance, represented in the anterior cingulate cortex, and PEs for other performance, 

represented in the dmPFC. Interestingly individual variance in the strength of dmPFC 

activation also predicted how far participants’ self PEs were affected by the performance of the 

others. Such findings have led some researchers (e.g. Bach & Schenke, 2017; Joiner, Piva, 

Turrin, & Chang, 2017) to argue that predictive processing plays a key role in social cognition. 

To date, most studies examining social prediction errors have considered cases where 

participants learn about other individuals, but do not examine the relationship between those 

individuals and the self (although see Will, Rutledge, Moutoussis, & Dolan, 2017 for an 

interesting exception). A distinct literature has examined the role of self-similarity in 

impression formation (Boer et al., 2011; Montoya & Horton, 2013) and shown that self-

similarity can lead to liking and affiliation. Numerous studies have shown that those we 
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perceive as similar to us in terms of traits (Paunonen & Hong, 2013), attitudes (Montoya & 

Horton, 2013) and preferences (Boer et al., 2011) tend to be evaluated more favourably than 

those perceived as different. There is evidence for a ventral-dorsal gradient in the mPFC when 

processing the similarity of others with similar others being processed in the ventromedial 

prefrontal cortex (vmPFC) and dissimilar others in the dmPFC (Denny, Kober, Wager, & 

Ochsner, 2012; Sul et al., 2015).  

The current study aims to test how the brain tracks and learns about other people from 

the self-similarity of their choices. In particular, we distinguish two possible ways in which the 

brain could track others: the Similarity approach and the Consistency approach. The Similarity 

approach assumes that, on each trial, we consider ‘is this person like me on this trial?’ and 

assign high prediction errors to any trial where an agent makes a different choice to me. The 

Consistency approach assumes that we model each person we encounter as an individual with 

a level of overall similarity to me. On each trial, we then consider ‘is this person’s choice 

consistent with their overall similarity to me?’ and assign high prediction errors to any trial 

where the agent behaves in a way that is inconsistent with that agent’s track record.  

To do this we adapted RL models to investigate how the brain tracks the choices of two 

different agents in terms of how similar they are to the participant’s own choices. It is important 

to note that we are not claiming that the tracking of similarity is necessarily linked to reward 

based reinforcement in a direct manner. Rather, we use RL models because they can track the 

accumulation of information and evidence over time. This allows us to look at how the brain 

represents confirming and disconfirming information about other’s similarity to ourselves. For 

a related approach applied to the learning of others’ traits see Zaki, Kallman, Wimmer, Ochsner 

and Shohamy (2016).  
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 Our task created a context in which participants chose which painting they prefer (an 

arbitrary aesthetic choice) and then learn the preferences of two agents for the same paintings 

(see Figure 1). Using fMRI and computational modelling, we can identify which brain areas 

track agents’ preferences relative to self-preferences in a trial-by-trial manner. In each trial our 

participants saw two paintings and indicated which they preferred. They then saw the 

preferences of two agents, a similar agent (ASim) who chose the same painting 75% of the 

time and a different agent (ADiff) who chose the same painting 25% of the time. Using RL 

models, we are able to calculate the prior probability of the agents’ choice and the prediction 

error of their actual choice separately for each trial and each agent, allowing us to localise brain 

regions where BOLD signal tracks the model parameters. 

Figure 1. Outline of experimental trial structure and number of trials per condition. A Trial 

phases & timings. Each trial has four phases (self, similar, different, feedback). On every 

screen, three icons at the top represent the participant (blue outline in the centre) and the two 

agents (two photos), with one icon enlarged in a green square to show who is the ‘active player’ 

in this phase. In the self-phase, participants chose which of two pictures they prefer. In the 
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ASim phase and ADiff phase, the two agents ASim and ADiff chose pictures and the participant 

sees the outcome. The order of these two phases was counterbalanced. Finally, in the Feedback 

phase, the participant sees a reminder of his/her own choice. B. Detail of one phase. This 

shows an expanded view of the two different screens within the ASim phase; the same structure 

was used for the Self phase and ADiff phase. Participant’s first see a ‘decision screen’ with the 

two pictures used on this trial. During the decision screen participants either chose their own 

preferred painting (Self phase) or waited to see the choice of the agent (Similar & Different 

phases). Then they see an ‘outcome screen’ which shows either the painting they chose (Self 

phase) or the painting the agent chose (ASim & ADiff phases). The durations of each screen 

are given at the bottom of the figure, and multiple times separated by a dash represent the 

jittering in order to effective temporal sampling resolution much finer than one TR. C. Number 

of trials of each type. This table shows the breakdown of the four possible combinations of 

choices made by the two agents, ASim and ADiff. Each agent could agree with the participant’s 

choice (Ag) or disagree (Dis). The columns show the percentage of trials, number of trials by 

block and total number of trials which had a particular pattern of choices. 

We then used reinforcement learning to create signed prediction error models of both 

the Similarity and Consistency approaches to tracking the agent’s choices (see Figure 2). In the 

Similarity model, agents’ are tracked only in relation to the participant’s own preferences, on 

a single dimension of ‘distance from me’. This means that the model will tend to have positive 

prediction errors for ASim and negative prediction errors for ADiff (see Fig2A). In the RL 

model, each signed prediction error then contributes to an Accumulated Similarity parameter, 

which will tend to be high for ASim (who is often similar) and low for ADiff (who is often 

different). To make this model clear, we term the two parameters the ‘similarity prediction 

error’ (PE_Sim) and the ‘accumulated similarity’ (AS). 
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Figure 2. Two possible ways that the choices of the two agents, ASim and ADiff, may be tracked 

in the brain. A. Similarity approach. The yellow/green boxes in the top row show how trials 

are classified as Similar or Different according to whether the agent choose the same picture 

as the participant or not, and the same classification is used for both agents. Green indicates 

that a choice is given a positive value and yellow that it has a negative value. This is reflected 

in the sample sequence of 20 trials, where the ‘choice similarity’ tends to be high for ASim and 

low for ADiff. Based on the choice similarity, the Sim_PE and AS parameters are calculated 

as in Equations 1 and 2. B. Consistency approach. Trials are classified as Consistent or 

Inconsistent according to whether the agent conforms to type. Both agents show high choice 

consistency most of the time in the sample of 20 trials shown below. Based on the choice 

consistency the PE_Con and AC parameters are calculated as in Equations 3 and 4. 

The alternative is the consistency model which assumes that participants track agents 

and choices in terms of whether the agent’s choice is consistent with their past level of 

preference similarity to the participant. Thus, we label each agent’s choices as ‘consistent’ or 

‘inconsistent’ with that agent’s past behaviour: agreeing with the participant is consistent for 

ASim but inconsistent for ADiff. In this model, a trial will have negative consistency prediction 

errors when ASim chooses a different picture to the participant, because this is unlike ASim’s 
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typical preference. In the same way a trial will have negative prediction error when ADiff 

chooses the same picture as the participant (unlike ADiff’s typical preference) (see Fig2B). 

These prediction errors feed into the Accumulated Consistency of each agent, which will be 

high when that agent conforms to type (i.e. high for both ASim and ADiff most of the time) 

but will fall if the agent makes atypical choices. To make this model clear, we term the two 

parameters the ‘consistency prediction error’ (PE_Con) and the ‘accumulated consistency 

(AC).  

Importantly, these two models predict a different pattern of brain activity in our 

experimental design, as ASim and ADiff’s trial-by-trial preferences can have the same sign 

(both consistent, according to the consistency approach) or opposite sign (as they chose 

different images, according to the similarity approach, see Figure 2). It is important to note that 

while our study can test how well each of these models fit activation in different brain areas 

we are not claiming that they are mutually exclusive competing accounts. Indeed, it is entirely 

plausible that some brain areas track similarity of choices directly while other track the 

consistency of choices. Our design allows for us to investigate the neural signature of both 

models, in two separate GLMs, and thus identify which brain areas (if any) are involved in 

each of these two ways of processing similarity relationships.  

2 Methods 

2.1 Design 

In our study participants tracked the choices of two agents on multiple trials, in relation 

to their own choices. On each trial, the participant and two agents, ASim and ADiff, indicated 

which of two paintings they preferred. ASim chose the same painting as the participant in 75% 

of all trials while ADiff only chose the same painting in 25% of trials.  



10 

 

2.2 Participants 

Twenty-five participants (mean age ± SD: 25.1 ± 5.7, 11 male) took part in this study 

which was approved by The University College London, Institute of Cognitive Neuroscience 

Research Department’s Ethics Committee. All participants gave their informed consent to 

participate and were paid for their participation. All participants were right-handed and were 

screened for neurological disorders. Due to technical issues, pre and post ratings data was lost 

for 7 participants. Therefore, our final sample size for the ratings analysis was n=18. As we did 

not use this ratings data for model fitting, and data on all 25 participant’s choices during the 

task was collected, this issue did not impact on the fMRI analysis so the full sample n=25 was 

used for fMRI analysis. 

2.3 Procedure 

2.3.1 Experimental Task 

The main task in this study was an aesthetic choice task. Participants were told that in 

each trial they would see a pair of paintings (see Supplementary Materials S1.1) and would 

have to choose which painting they preferred. They were informed that other participants had 

previously indicated which of the paintings they preferred and that they would see the choices 

of two previous participants during the study. Names and faces were assigned to these ‘previous 

participants’ but in fact they were computer agents whose choices were determined based on 

the participant’s own choices. Prior to entering the scanner participants completed a training 

block of the task (see Supplementary Materials S1.2). After the training, participants learnt the 

names of the agents with whom they would do the experimental task. They also rated their 

faces for similarity, likeability and attractiveness, using a 10-point scale in order provide us 

with a manipulation check as to how well the participant’s learnt the similarity of the agent to 
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themselves. Other than being asked to rate their similarity to the agent, participants were not 

given any information to suggest the relationship between their choices and those of the agents 

was important to the task. 

Each trial was divided into four phases (see Figure 1A). The first three phases were 

each split into two screens, a decision screen and an outcome screen (see Figure 1B). In the 

Self-phase participants were shown a pair of paintings on the decision screen and had 2.75 

seconds to choose which they preferred using the left and right buttons on a response box. They 

then saw an outcome screen displaying their preferred painting for a jittered interval (1-3 

seconds). In the Similar-phase, participants first saw a 1-second decision screen which 

displayed the pair of paintings along with an indicator that ASim was choosing. This was 

followed by an outcome screen which displayed the agent’s preferred painting for a jittered 

interval (2.75 -4.75 seconds). In the Different-phase, participants again saw a decision screen 

with an indicator that ADiff was choosing, followed by a jittered outcome screen displaying 

that agent’s preferred painting. The order of the similar & different phases was 

pseudorandomised across trials. Finally, each trial contained a feedback phase in which 

participants again saw their own choice for an interval of 2-seconds.  

Participants completed 4 sessions of 20 trials (see Figure 1C for a breakdown of trial 

types by block), at the end of each block they rated the similarity, likeability and attractiveness 

of each agent using a 10-point scale. Using fast event related design, i.e. varying the intervals 

of the outcome screen in the three choice phases and using many trials, achieved an effective 

temporal sampling resolution much finer than one TR for each of these periods. The lengths of 

the intervals were uniformly distributed for each period, ensuring that Evoked Haemodynamic 

Responses time-locked to the events were sampled evenly across the time period following 

each choice period. 
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2.4 Model-Based fMRI analysis 

For full details of image acquisition and fMRI data analysis please see Supplementary 

Materials S1.3. To examine whether the relationship between the participant preferences and 

those of the agents was coded in terms of similarity or consistency, two general linear models 

(GLM) were created, which include different trial types and the parameters of the two RL 

models. Both GLMs modelled BOLD activation during outcome screen for ASim and ADiff 

separately. Regressors of no interest modelled activity during the self-choice outcome screen, 

the feedback phase, the ratings periods, trials where participants failed to make a choice and 

the residual effects of head motion. In addition, parametric modulators linked to the outcome 

screen regressors allowed us to model the values of our RL parameters on a trial-by-trial basis. 

Note that we also conducted a more traditional GLM without RL parameters, the details of 

which can be found in Supplementary materials S2.  

In the Similarity GLM we modelled the signed similarity prediction error (PE_Sim) 

and accumulated similarity (AS) between the agent choice and the participant choice for each 

agent (n), using the following algorithms:  

[1] 𝑃𝐸_𝑆𝑖𝑚𝑛(𝑡) = 𝐶ℎ𝑜𝑖𝑐𝑒𝑆𝑖𝑚(𝑡) − 𝐴𝑆𝑛(𝑡) 

[2] 𝐴𝑆𝑛(𝑡 + 1) = 𝐴𝑆𝑛(𝑡) + 𝜆 ∗ 𝑃𝐸_𝑆𝑖𝑚𝑛(𝑡) 

where  

𝐶ℎ𝑜𝑖𝑐𝑒𝑆𝑖𝑚(𝑡) = {
1  𝑎𝑔𝑒𝑛𝑡 𝑐ℎ𝑜𝑠𝑒 𝑠𝑎𝑚𝑒 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑎𝑠 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡
−1 𝑎𝑔𝑒𝑛𝑡 𝑐ℎ𝑜𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑓𝑟𝑜𝑚 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

 

As we did not fit the model to any response, we set the learning rate (λ) with a fixed value of 

0.5 and initial AS was set to 0. The learning rate of 0.5 was chosen a-priori and fixed for all 

participants, to indicate the carry-on effect of previous trials to the current trials. This value 
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was chosen because it is in the middle of the LR range (0-1) and indicates a decaying memory 

window of about 4 trials. We chose this conservative approach and did not explore learning 

rates further to avoid double-dipping the data or post-hoc analysis. AS was set at 0 as this 

represented no a priori expectation of a similarity relationship between the participant and the 

agents. In total, there were six regressors-of-interest in our Similarity GLM: outcome screens, 

AS values and PE_Sim values for both ASim and ADiff. 

In the Consistency GLM we modelled the signed consistency prediction error 

(PE_Con) and accumulated consistency (AC) between the agent choice and the participant 

choice for the two agents (n=ASim or ADiff), using the following algorithm. 

[3] 𝑃𝐸_𝐶𝑜𝑛𝑛(𝑡) = 𝐶ℎ𝑜𝑖𝑐𝑒𝐶𝑜𝑛(𝑡) − 𝐴𝐶𝑛(𝑡) 

[4] 𝐴𝐶𝑛(𝑡 + 1) = 𝐴𝐶𝑛(𝑡) + 𝜆 ∗ 𝑃𝐸_𝐶𝑜𝑛𝑛(𝑡) 

where  

 

𝐶ℎ𝑜𝑖𝑐𝑒𝐶𝑜𝑛(𝑡) =

{
 

 
1    𝐴𝑔𝑒𝑛𝑡′𝑠 𝑐ℎ𝑜𝑖𝑐𝑒 𝑤𝑎𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒𝑖𝑟 𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡′𝑠 𝑐ℎ𝑜𝑖𝑐𝑒𝑠

−1        𝐴𝑔𝑒𝑛𝑡′𝑠 𝑐ℎ𝑜𝑖𝑐𝑒 𝑤𝑎𝑠 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑡𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒𝑖𝑟 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑖𝑟𝑡𝑦 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡′𝑠 𝑐ℎ𝑜𝑖𝑐𝑒𝑠

 

Again, the learning rate (λ) was set to 0.5 and initial AC was set to 0 (see Figure 2C for 

examples of how AS and PE varied across 20 trials). In total, there were six regressors-of-

interest in our Consistency GLM: outcome screens; AC values and PE_Con values for both 

ASim and ADiff. 

3 Results 



14 

 

3.1 Behavioural Results 

 To examine whether learning about the preferences of the agents changed participants 

feelings of affiliation towards them, we collected ratings of similarity, likeability and 

trustworthiness at the start of the study and after every 20 trials. This meant that each participant 

contributed five ratings of each of the three attributes across the study. These ratings were then 

z-scored within participant to remove baseline differences between participants, before the next 

analysis. Three separate 2 (agent: similar/different) x 5 (session number: pre/S1/S2/S3/S4) 

repeated measures ANOVAs were carried out on the z-scored ratings of similarity, liking and 

trust (See Figure 3). Due to problems with data recording, the ratings from 7 participants were 

incomplete and were excluded from the behavioural analysis leaving a remaining sample of 18 

participants. 

 The ANOVA on similarity ratings found a significant main effect of agent, F(1,17) 

= 23.52, p < .001, η2
p = .58. Overall participants rated ASim as being more similar (M = 0.33, 

MSE = 0.15) to them than ADiff (M = -0.68, MSE = 0.12). There was also a significant 

interaction between agent and session F(1,17) = 5.65, p = .001, η2
p = .25. To examine this 

interaction further, ratings for ADiff were subtracted from the ratings of ASim for each session 

to create a difference score. Pairwise comparisons (Bonferroni corrected) showed that the 

difference score for the pre-session (M = -0.16, MSE = 0.36) significantly differed from the 

scores after sessions S1 (M = 1.49, MSE = 0.35), p < .05, S3 (M = 1.26, MSE = 0.29), p < .05, 

and S4 (M = 1.43, MSE = 0.25), p < .01. No other pairwise comparisons were significant.  

 The ANOVA on liking ratings found a significant main effect of agent, F(1,17) = 

23.8, p < .001, η2
p = .58. Overall participants rated ASim as being more likeable (M = 0.55, 

MSE = 0.07) than ADiff (M = -0.2, MSE = 0.12). There was no significant effect of session and 

no interaction between session and agent. The ANOVA on trust ratings found a significant 
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main effect of agent, F(1,17) = 7.67, p < .05, η2
p = .31. Overall participants rated ASim as 

being more trustworthy (M = 0.23, MSE = 0.11 than ADiff (M = -0.24, MSE = 0.01). There 

was no significant main effect of session and no interaction between session and agent. 

 Figure 3. Z-scored ratings of liking similarity and trustworthiness for the similar and different 

agents across rating sessions. 

3.2 fMRI Results 

3.2.1 Main Effect of Agent Preference Similarity  

Two contrasts investigated the main effect of agent identity (ASim/ADiff) on BOLD 

response. The regressors which contribute to these contrasts were identical in the Similarity 

GLM and the Consistency GLM, so the results here are the same for both. The ADiff > ASim 

contrast revealed that observing the choice of ADiff compared to ASim led to greater activation 

in the right inferior frontal sulcus (rIFS) and in a cluster centred on the right fusiform gyrus 

(rFG) (see Table 1 and Figure 4A). No significant activations were found in the ASim > ADiff 

contrast. 

 

Table 1. Peak voxel coordinates in MNI space, z-values and cluster sizes for analyses of the 

outcome screen showing significant effects after cluster correction for main effect of similarity. 
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Same shading indicates local maxima in distinct anatomical regions within the same cluster, 

BA indicates Brodman Area, k indicates the cluster size threshold for whole brain significance 

of p < 0.05. 

Region Hem. X Y Z Z-Score Cluster Size 

Different > Similar (k = 33)       

Inferior Frontal Sulcus (BA 44) R 38 10 34 3.86 57 

Fusiform Gyrus (BA 18) R 14 -82 -10 3.51 72 

Lateral Occipital Gyrus (BA 19) R 30 -82 -14 3.40  

3.2.2 Parametric Analysis of the Similarity GLM  

To identify brain regions which tracked Accumulated Similarity (AS) across both 

agents, we calculated a conjunction of the RL parameters for each of the agents, that is: ASASim 

 ASADiff. This did not reveal any significant clusters in either a positive or negative direction, 

suggesting that no brain areas directly tracked preference similarity between agents and 

participant. Similarly there were no significant clusters that tracked the positive conjunction of 

similarity prediction error for both agents, that is, PE_SimASim  PE_SimADiff. This means that 

no areas showed increased activation when both agents preference were unexpectedly similar 

to that of the participant. However, the negative PE_Sim conjunction analysis revealed that 

unexpected dissimilarity between either agent choice and participant choice correlated with 

activation in a number of clusters within the occipital cortex including the bilateral lateral 

occipital cortex (LOC) and the lingual gurus (see Table 2 and Figure 4B). 

3.2.3 Parametric Analysis of the Consistency GLM 

To identify brain regions tracking the consistency of agents’ choices across both agents, 

we first examined the conjunction of areas tracking accumulated consistency (AC), that is 

ACASim  ACADiff. The positive conjunction showed a significant activation in a cluster-

corrected region centred on the superior medial frontal gyrus (smFG) (see Table 3 and Figure 

5A). This region showed greater activation as evidence for the consistency of the agents’ choice 

similarity to the self increased, and lower activation during inconsistence periods. No 
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significant activations were found in the conjunction analysis testing for areas negatively 

correlated with AC. 

Figure 4. A) Brain areas showing significant cluster corrected results in the ADiff > ASim 

contrast for the Outcome screen. B) Brain areas tracking the PE_Sim parameter (Similarity 

prediction error) for the Outcome screen across both agents, cluster corrected. Parameter 

estimates in the lower panel are averaged across the whole cluster. Error bars represent SEM. 

Graph border colours indicate matching circled area. Red/yellow represents positive 

activations and blue/green represents negative activations.  

The conjunction analysis testing for areas tracking prediction error in consistency 

(PE_ConASim  PE_ConADiff) identified significant cluster-corrected activations bilaterally in 

a dorsal region of the caudate nucleus as well as in a more ventral midbrain region of the left 

hemisphere (see Table 3 and Figure 5B). These areas showed increased BOLD response when 

the agents’ choices were unexpectedly consistent with their overall preference, and decreased 
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activation when agents’ choices were unexpectedly inconsistent. Note that while the peak 

activation in the more dorsal left hemisphere cluster is in fact found in the neighbouring corpus 

callosum both dorsal clusters showed considerable overlap with the caudate nucleus. The 

conjunction analysis testing for areas tracking PE_Con in a negative direction identified 

significant clusters in several right hemisphere regions, namely the angular gyrus (rAG), the 

superior frontal sulcus (rSFS), the superior temporal sulcus (rSTS), the medial temporal gyrus 

(rMTG) and the Precuneus (see Table 3 and Figure 5C). These areas showed increased BOLD 

response when the agents’ choices were unexpectedly inconsistent with their overall 

preference, and reduced activity when the agents’ choices were highly predictable.  

Table 2. Peak voxel coordinates in MNI space, z-values and cluster sizes for analyses of the 

outcome screen in the Similarity GLM showing significant effects after cluster correction for 

conjunction analyses of the AS and PE parametric modulators. Same shading indicates local 

maxima in distinct anatomical regions within the same cluster, BA indicates Brodman Area, k 

indicates the cluster size threshold for whole brain significance of p < 0.05. 

Region Hem. X Y Z Z-Score Cluster Size 

Negative PE_Sim Similar ∩ Different 

(k = 42) 
      

Lateral Occipital Gyrus (18) L -28 -94 16 4.06 324 

Lateral Occipital Gyrus (37) R 32 -54 -16 3.81 86 

Lateral Occipital Gyrus (18) R 24 -90 18 3.80 457 

Middle Occipital Gyrus (19) R 36 -80 22 3.74  

Lingual Gyrus (17) L -6 -78 8 3.79 249 

Lateral Occipital Gyrus (19) R 28 -82 -16 3.67 64 

Lateral Occipital Gyrus (37) L -28 -60 -16 3.54 100 

Fusiform Gyrus (37) L -26 -48 -14 3.39  
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Figure 5. Brain areas showing significant cluster corrected tracking of AC and PE_Con for 

the Outcome screen. A) Areas significantly tracking AC in the positive ASim ∩ ADiff 

conjunction. B) Areas significantly tracking PE_Con in the positive ASim ∩ ADiff conjunction. 

C) Areas significantly tracking PE_Con in the negative ASim ∩ ADiff conjunction. Parameter 

estimates averaged across whole cluster. Error bars represent SEM. Graph border colours 

indicate matching circled area. Red/yellow represents positive activations and blue/green 

represents negative activations. sMFG = superior Medial Frontal Gyrus, rCN = right Caudate 

Nucleus, rAG = right Angular Gyrus, rSFS = right Superior Frontal Sulcus. 

4 Discussion  

Our study examined the neural basis of learning about preference similarity between 

self and others and its role in promoting affiliation. We created a context where participants 

could express a preference for a painting and learn about the preferences of two agents for the 

same paintings. Our behavioural data shows that similar preferences lead to higher ratings of 

liking, trustworthiness and similarity indicating that participants tracked the agents’ 
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preferences in relation to their own preferences.  

Table 3. Peak voxel coordinates in MNI space, z-values and cluster sizes for analyses of the 

outcome screen in the Consistency GLM showing significant effects after cluster correction for 

conjunction analyses of the AS and PE parametric modulators. Same shading indicates local 

maxima in distinct anatomical regions within the same cluster, BA indicates Brodman Area, k 

indicates the cluster size threshold for whole brain significance of p < 0.05. 

Region Hem. X Y Z Z-Score Cluster Size 

Positive AC ASim ∩ ADiff (k = 43)       

Superior Medial Frontal Gyrus (9) R 8 56 34 3.37 76 

Superior Medial Frontal Gyrus (10) L -2 54 24 3.25  

Superior Medial Frontal Gyrus (10) R 6 56 22 3.17  

Positive PE_Con ASim ∩ ADiff (k = 

42) 
      

Corpus Callosum L -12 -6 28 4.54 52 

Caudate Nucleus R 16 -6 28 3.90 71 

Corpus Callosum L -4 14 12 3.64 56 

Negative PE_Con ASim ∩ ADiff (k = 

42) 
      

Angular Gyrus (40) R 56 -46 50 4.22 341 

Interparietal Sulcus (40) R 32 -50 40 3.70  

Superior Frontal Sulcus (10) R 34 50 10 4.20 270 

Superior Temporal Sulcus (37) R 60 -58 16 3.85 76 

Superior Temporal Sulcus (41) R 44 -42 20 3.72 43 

Superior Temporal Sulcus (39) R 42 -54 16 3.19  

Precuneus (39) R 10 -56 48 3.72 106 

Middle Temporal Gyrus (21) R 60 -20 -16 3.46 57 

Superior Temporal Sulcus (21) R 62 -28 -10 3.43  

 Our introduction outlined two possible, non-mutually exclusive, ways in which 

preference similarity might be tracked in the brain: either by a general mechanism which tracks 

an agent’s choice in relation to one’s own, i.e. how similar or dissimilar they are from the self, 

or via a model of consistency, which tracks agent’s choices in terms of their consistency to that 
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agent’s previous choice, i.e. how consistently similar or dissimilar they are from the self. To 

examine the evidence for each of these two mechanisms, we created two reinforcement 

learning (RL) models which tracked the agents’ choices based on similarity and consistency 

respectively. Our results from the similarity model indicated that regions of the visual cortex 

negatively tracked similarity prediction error (PE_Sim). Results from the consistency model 

showed a number of brain areas tracking different variables associated with the consistency 

model; the dorsomedial pre-frontal cortex (dmPFC) tracking Accumulated Consistency (AC), 

and the caudate nucleus, angular gyrus and precuneus tracked consistency prediction error 

(PE_Con). The caudate is involved in value updating (Bhanji & Delgado, 2014; O’Doherty et 

al., 2004), while the angular gyrus and precuneus are associated with social cognition (Murray, 

Debbané, Fox, Bzdok, & Eickhoff, 2015; Spreng, Mar, & Kim, 2009). Below we elaborate on 

the results of the AC conjunction before moving on to discuss the findings on PE_Con and 

PE_Sim. 

4.1 dmPFC Tracks Accumulated Consistency  

The AC parameter represents a trial-by-trial estimate of the probability that a person 

makes choices in line with his previous choices, this is, that the similar agent (ASim) should 

choose the same painting as the participant while the different agent (ADiff) should choose 

differently. The only area we found tracking AC was a cluster in the bilateral superior medial 

frontal gyrus (smFG) corresponding to the anterior region of the dmPFC. The dmPFC is known 

to be a key area for the processing of information about both self and other (Amodio & Frith, 

2006; Eickhoff, Laird, Fox, Bzdok, & Hensel, 2014; Mitchell, Banaji, & Macrae, 2005). See 

supplementary materials S3 for a more detailed survey of previous results.  

The dmPFC’s involvement in coding prior knowledge of other people is supported by 

previous research suggesting that the dmPFC encodes reputational priors of one’s partners 
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during economic games (Fouragnan et al., 2013; Hampton, Bossaerts, & O’Doherty, 2008). 

Our results build on these findings by suggesting that dmPFC prediction errors track the 

consistency of the agent’s similarity to the self rather than simply tracking preference 

similarity. 

4.2 Consistency Prediction Errors are tracked by Regions Involved in 

Reward and Social Cognition  

 PE_Con reflects the difference between the agent’s choice and the participant’s 

expectation of what choice the agent will make. For example, the model assigns a positive 

update signal when ADiff picked the painting not chosen by the participant, and a negative 

signal when ADiff picked the same painting (See Figure 2). Areas that tracked PE_Con 

revealed two distinct patterns of activation. Clusters in the bilateral caudate nucleus (Figure 

4B) showed increased activity when the agents chose consistently with their type. Meanwhile 

clusters in regions associated with social cognition including the superior temporal sulcus 

(STS), the angular gyrus (AG), Precuneus and SFS (superior frontal sulcus; Figure 4C) showed 

increased activations when the agent’s choice was inconsistent with their type. Overall, this 

pattern shows that prediction error (PE) tracking in these regions is not a ‘generic’ signal of 

how similar a person is to me, but rather reflects how much each person’s choice conforms to 

their typical pattern of similarity to me.  

The caudate nucleus, along with other parts of the striatum, has been heavily implicated 

in the generation of prediction errors during RL of rewards for self (Balleine, Delgado, & 

Hikosaka, 2007; O’Doherty et al., 2004; Schultz, 2015) and others (Báez-Mendoza & Schultz, 

2013; Bhanji & Delgado, 2014; Ruff & Fehr, 2014). Previous studies have shown that the 

caudate nucleus is also involved in signalling PEs when learning the characteristics of others. 

King-Casas et al. (2005) found that the caudate nucleus activity tracked PEs regarding the 
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trustworthiness of other during an economic game. Subsequent studies have found similar 

results for trustworthiness (Fareri, Chang, & Delgado, 2012; Fett, Gromann, Giampietro, 

Shergill, & Krabbendam, 2014; Fouragnan et al., 2013), generosity (Fareri et al., 2012), 

reliability in advice giving (Diaconescu et al., 2017) and general behavioural traits (Mende-

Siedlecki & Todorov, 2016). Our findings add to this literature by showing that caudate nucleus 

activity also track prediction error when learning about the similarity of others’ preferences to 

one’s own.  

The regions showing greater activations when PE_Con was negative, i.e. when the 

agents’ choice was inconsistent with their typical choices, are key nodes of the mentalising 

network involved in processing information about self and others (Barrett & Satpute, 2013; 

Murray et al., 2015; Spreng et al., 2009; Van Overwalle, 2009). These areas have been 

implicated in the formation of impressions about other peoples’ traits (Gilron & Gutchess, 

2012; Hackel et al., 2015; Hughes et al., 2017; Ma et al., 2012; Mende-Siedlecki, Cai, et al., 

2013), beliefs (Cloutier et al., 2011) and abilities (Bhanji & Beer, 2013; Mende-Siedlecki, 

Baron, et al., 2013). Of particular note are two studies which directly modelled PEs for learning 

about the traits of other. Hackel et al. (2015) found that the precuneus and STS tracked PEs for 

other generosity during an economic game while Stanley (2016) found that only the precuneus 

showed greater tracking of PEs in a social verses non-social setting. The current study shows 

that these regions also tracks PEs regarding the similarity relationship between self and others, 

underlining the role of PEs in social learning (Joiner et al., 2017). 

It is also notable that while previous studies on social impression formation have tended 

to show bilateral activations of the mentalising network, in the current studies activity was 

limited to the right hemisphere. This is consistent with previous research demonstrating right 

lateralisation for tasks involving self and other differentiation (Decety, 2003; Hu et al., 2016; 
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Kaplan, Aziz-Zadeh, Uddin, & Iacoboni, 2008; Uddin, Kaplan, Molnar-Szakacs, Zaidel, & 

Iacoboni, 2005). 

4.4 Similarity Related Responses in Regions Involved in Visual Attention  

In addition to modelling the RL parameters, we also directly contrasted the outcome 

screen where participants see the choices of ASim with the outcome screen for ADiff. This 

contrast shows greater activation for ADiff in two clusters; one centred on the rIFS and the 

other on the rFG. The IFS has been implicated in attentional processing and in particular in the 

control of attentional shifts by both internal goals and by salient external stimuli (Aron, 

Robbins, & Poldrack, 2004, 2014; Asplund, Todd, Snyder, & Marois, 2010; Filimon, 

Philiastides, Nelson, Kloosterman, & Heekeren, 2013; Levy & Wagner, 2012), while the FG 

is known to play a key role in the visual perception of faces (Contreras, Banaji, & Mitchell, 

2013; Kanwisher & Yovel, 2006; Rotshtein, Henson, Treves, Driver, & Dolan, 2005). 

Interestingly a previous study found greater FG activation when participant observed faces of 

individuals judged to have different traits to themselves (Leshikar, Cassidy, & Gutchess, 2016). 

These findings were also consistent with our conjunction analysis of regions that showed a 

negative relationship to the value of PE_Sim. This analysis revealed that when an agent made 

an unexpectedly dissimilar choice to that of the participant it led to increased activation across 

a series of visual areas including regions in the bilateral LOC and in the left FG. 

The activation of these areas suggests that participants may have found the choices of 

ADiff to be more attention grabbing than those of ASim in a comparable way to studies that 

have demonstrated an attentional bias towards untrustworthy as opposed to trustworthy agents 

(Dzhelyova, Perrett, & Jentzsch, 2012; Farmer, Apps, & Tsakiris, 2016; Vanneste, Verplaetse, 

Van Hiel, & Braeckman, 2007).  
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4.5 Comparison with  non-Reinforcement Learning GLM 

 In addition to running our main RL analysis we also conducted a more traditional GLM 

which divided our trails using a 2 x 2 design with confederate/agent identity (Similar vs 

Different) as one factor and choice decision (Agree vs Disagree) as the other factor, the 

interaction between them (i.e. Similar Agree and Different Disagree vs Similar Disagree and 

Different Agree) was equivalent to our consistency model. This allowed us to compare the 

results of our RL model to more traditional non-parametric approaches (see Supplementary 

Materials S2 for full details and results). When comparing the RL models and the traditional 

GLM the results the activations for the choice main effects and the consistency (interaction 

effects) are largely similar with the Disagree > Agree contrast showing activations equivalent 

to the clusters shown for areas that negatively tracked similarity prediction errors, the 

Consistent > Inconsistent contrast showing activations for two of the three clusters we 

identified that positively tracked consistency PE and the results for the Inconsistent > 

Consistent contrast showing results largely consistent with areas negatively tracking 

consistency PE.  

Despite these similarities, our model has two advantages over the non RL GLM. First it is more 

sensitive to the temporal order of observations, as it takes history into account. For example, it 

treats differently two consecutive inconsistencies as the first one is more surprising than the 

second one, while the standard GLM treats them in the same way. This makes our approach 

more sensitive, more powerful (statistically) and more relevant to our research question. The 

second advantage is that we can estimate the hidden variables of accumulated 

consistency/similarity which the standard GLM cannot. This allowed our model to identify the 

dMPFC area which is involved in the tracking of accumulated consistency.  

4.6 Limitations 

One key limitation of the current study is that our task did not allow us to collect trial-

by-trial behavioural data showing what participants had learnt about the agents. This is because 

we wanted participants to learn implicitly, rather than making explicit predictions of the agent’s 

choice on each trial. Because of this we approximated a learning rate (0.5) and used it in our 

RL models to track changes in preference tracking according to the actual choices made by the 



26 

 

agents. This raises the possibility that there may only be a weak fit between the learning rate 

used in our model and the actual learning rate of our participants. However, our main 

predictions related to the direction of the tracked prediction errors and accumulated 

preferences, and not with the specific magnitude of these variables, which are less likely to be 

affected by our approximation. This is in line with a recent theoretical paper (Wilson & Niv, 

2015) that demonstrated that model based fMRI results are, under some conditions, insensitive 

to changes in individual learning rates. While it is possible that our approximation may be lead 

to lower power at detecting brain responses to prediction errors, we feel that the main 

hypothesis concerning the direction of the effects (Similarity approach vs Consistency 

approach) is supported by our analysis.  

4.6 Conclusions 

In this study, we combined computational modelling and fMRI to investigate the neural 

processes that underlie learning about the similarity of other people’s preferences to one’s own. 

We found that more regions of the brain encode information about the similarity of others’ 

choices in a consistency driven manner than encode that information purely based on each 

particular preference’s similarity to one’s own. This was particularly the case for the 

accumulated information about the other’s similarity with no areas showing sensitivity to 

purely accumulated similarity while a region of the dmPFC showed significant tracking of 

accumulated consistency.  

These findings suggest that higher level neural representations of similarity to the self 

are coded in a person specific manner which reflects how consistent are that person’s 

preference related to the self, i.e. do we usually agree or disagree in our preferences. As such 

our study highlights the role of context dependent predictive processing in the learning of 

preference similarity between self and others and, by extension, in the formation of social 
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impressions more generally. Further research in this area could build on our results by 

examining whether the neural correlates of similarity learning are modulated by having pre-

existing cues about how similar that person is to oneself. In addition, it is possible that this 

consistency approach also applies to learning about other domains including people’s traits, 

attitudes and competence.  
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The Neural Basis of Shared Preference 

Learning – Supplementary Materials  

 

S1. Supplementary Methods 

S1.1. Materials 

The picture stimuli used in this study comprised of 40 pairs of abstract paintings and 40 pairs of 

landscape paintings that were matched as closely as possible in terms of their visual and 

aesthetic properties. This was done to ensure that different pairs of paintings would not differ 

wildly in their characteristics so that the choices of the different agent would not suggest an 

abnormal set of preferences. To construct these sets 120 abstract and 120 landscape images were 

downloaded from the internet and resized to 390x390 JPEG images with any remaining space 

on either dimension filled in with black. These images were then rated in a pre-study by a group 

of 20 participants on their complexity, concreteness, attractiveness, valence, affectivity and 

interest using a 7-point scale. In addition each images’ luminance and contrast were calculated 

using MATLAB (Mathworks 2015).  

The mean ratings and luminance and contrast measures for each image were standardised across 

all images. Similarity scores were created for each measure by subtracting each images score 

from the score of every other image of its group (abstract or landscape). The similarity scores for 

all measures were then combined into one value using the following algorithm:  

(𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 ∗ 2) +  (𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 ∗ 2) + 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝑉𝑎𝑙𝑎𝑛𝑐𝑒 + 𝐴𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

+ (
𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒𝑛𝑒𝑠𝑠

2
) + (

𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒

2
) + (

𝐶𝑜𝑛𝑡𝑎𝑠𝑡

2
) 

Each of the images was then paired with its closest neighbour and each pair was then removed 

from the array. The 40 closest pairs in each group were used in the fMRI experiment and the 

next 5 closest pairs were used in the training block. 

 



S1.2 Pre Scanning Training 

Prior to entering the scanner participants completed a training block of the task 

consisting of 10 trials, to ensure that they understood the task. In the training block, they saw 

two agents of the opposite gender to themselves, and choices were made in the order: Agent 1, 

Participant, Agent 2. This was to create the belief that the order of making choices was random 

and that each agent made choices independently. In fact, in the experimental trials, the choices 

of the agents were determined from the participant choices to create appropriate levels of 

similarity. After the training, participants learnt the names of the agents with whom they would 

do the experimental task and rated their faces for similarity, likeability and attractiveness, using 

a 10-point scale. In the experimental blocks, participants saw these two agents of the same 

gender as them and the participants’ choice always came before the choices of the two agents. 

Images of the agents were taken from the Karolinska Directed Emotional Face database 

(Lundqvist, Flykt, & Öhman, 1998) but participants were informed that these photos were stand 

in images for the actual other participants. 

S1.3 Image Acquisition and Data Analysis  

A 1.5 T Siemens TIM Avanto scanner with a 32-channel head coil was used to acquire 

both T1-weighted structural images and T2*-weighted echoplanar images using the multiband 

method (64×64 pixels; 3.2×3.2 mm; echo time, 55 ms, multiband factor=2) with blood oxygen 

level-dependent (BOLD) contrast. Each volume comprised 40 axial slices (3.2 mm thick, 

oriented approximately to the anterior commissure–posterior commissure plane), covering most 

of the brain but omitting inferior portions of the cerebellum. Functional scans were acquired in 

four sessions, each comprising 222 volumes (~7.4 min). Volumes were acquired continuously 

with an effective repetition time of 2s per volume. The first four volumes in each session were 

discarded to allow for T1 equilibration effects. Prior to functional scanning, a 6 min T1-

weighted MPRAGE structural scan was collected at a resolution of 1×1×1 mm. Stimuli were 

projected onto a screen behind the participant and viewed in a mirror. Participants responded 

using a 4-button response box. All stimuli were presented with Cogent running under 

Matlab2014, permitting synchronisation with the scanner and accurate timing of stimuli 

presentation.  

Data were processed and analysed using SPM12 (www.fil.ion.ucl.ac.uk/spm). The EPI 

images from all four sessions of each participant were realigned to a mean EPI image for that 

http://www.fil.ion.ucl.ac.uk/spm


participant. Images in which the participant moved more than 1.5mm or had rotation of more 

than 1 degree were visually examined and if seen to contain artefacts were removed from the 

analysis and replaced with volumes interpolated from the preceding and subsequent images. No 

participant had artefacts in more than 5% of images. Each participant’s structural image was 

processed using a unified segmentation procedure combining segmentation, bias correction, and 

spatial normalization to the MNI template (Ashburner & Friston, 2005). The same normalization 

parameters were then used to normalize the EPI images. Finally, the images were spatially 

smoothed to conform to the assumptions of the GLM implemented in SPM12 by applying a 

Gaussian kernel of 8 mm FWHM. 

 For each of our two GLMs SPM12 was used to compute first level parameter estimates 

(beta) and t-contrast images (containing weighted parameter estimates) for each contrast at each 

voxel. To examine regions showing a main effect of agent similarity, two contrasts were carried 

out between the outcome screen regressors (ASim > ADiff, ADiff > ASim). In addition, to 

examine regions that tracked the RL model parameters in each model, conjunction images were 

calculated for each RL parameter (AS ASim /ACASim  AS ADiff/ACADiff) and (PE_Sim ASim 

/PE_Con ASim  PE_Sim ADiff/PE_Con ADiff). 

 For the group-level analysis, the first level images from all participants were subjected 

to two one-sample t-tests, one in the positive direction and the other in the negative direction. 

Images derived from these second level analyses were thresholded at p < 0.001, uncorrected. For 

each analysis, a separate Monte Carlo simulation implemented in 3dClustSim (Forman et al., 

1995) was used to determine the correct cluster extent threshold needed for a whole brain 

cluster-wise significance level of p < 0.05. Anatomical Regions were determined using the 

AICHA atlas (Joliot et al., 2015) to for gray matter and the Tractography based Atlas of human 

brain connections Projection Network (Natbrainlab, Neuroanatomy and Tractography 

Laboratory) (Catani & de Schotten, 2012; de Schotten et al., 2011) for the white matter. 

S2. Alternative Non Parametric Data Analysis  

In addition to our two parametric GLMs we conducted an additional analysis to examine to what 

extent the use of our parametric modulators shed additional light on our findings when 

compared with a more traditional factorial GLM. 

S2.1 GLM Design and Data Analysis  



This GLM modelled BOLD activation during agent outcome screens categorised across the 

factors of agent (ASim, ADiff) and choice (agree (Ag), disagree (Dis)). Regressors of no interest 

modelled activity during the self-choice outcome screen, the feedback phase, the ratings periods, 

trials where participants failed to make a choice and the residual effects of head motion. 

SPM12 was used to compute first level parameter estimates (beta) and t-contrast images 

(containing weighted parameter estimates) for each contrast at each voxel. To examine regions 

showing a main effect of agent similarity two t-contrasts were carried out between the outcome 

screen regressors (ASimAg + ASimDis > ADiffAg + ADiffDis , ADiffAg + ADiffDis > 

ASimAg + ASimDis). To examine regions showing a main effect of choice similarity two t-

contrasts were carried out between the outcome screen regressors (ASimAg + ADiffAg > 

ASimDis + ADiffDis, ASimDis + ADiffDis > ASimAg + ADiffAg). Finally, to examine 

regions showing a main effect of choice consistency two t-contrasts were carried out between 

the outcome screen regressors (ASimAg + ADiffDis > ASimDis + ADiffAg, ASimDis + 

ADiffAg > ASimAg + ADiffDis). 

 For the group-level analysis, the first level images from all participants were subjected 

to one-sample t-tests. Images derived from these second level analyses were thresholded at p < 

0.001, uncorrected. For each analysis, a separate Monte Carlo simulation implemented in 

3dClustSim (Forman et al., 1995) was used to determine the correct cluster extent threshold 

needed for a whole brain cluster-wise significance level of p < 0.05. Anatomical Regions were 

determined using the AICHA atlas (Joliot et al., 2015) for gray matter and the Tractography 

based Atlas of human brain connections Projection Network (Natbrainlab, Neuroanatomy and 

Tractography Laboratory) (Catani & de Schotten, 2012; de Schotten et al., 2011) for white 

matter. 

S2.2 Factorial GLM Results  

Full results of this GLM analysis can be seen below in table S1. As can be seen the 

results the activations for the choice main effects and the consistency are largely in with those of 

our parametric modulator GLMs. The Disagree > Agree contrast results showed activations 

equivalent to the clusters shown for areas that negatively tracked similarity prediction errors, the 

results for the Consistent > Inconsistent contrast showed significant activations for two of the 

three clusters we identified that positively tracked consistency PE and the results for the 

Inconsistent > Consistent contrast showed results largely consistent with areas negatively 



tracking consistency PE.  

Table S1. Peak voxel coordinates in MNI space, z-values and cluster sizes for analyses of the 

outcome period in the Consistency GLM showing significant effects after cluster correction for 

conjunction analyses of the AS and PE parametric modulators. Same shading indicates local 

maxima in distinct anatomical regions within the same cluster, BA indicates Brodman Area, k 

indicates the cluster size threshold for whole brain significance of p < 0.05. 

Region Hem. X Y Z Z-Score Cluster Size 

Disagree > Agree (k = 35) 
 

     

Lateral Occipital Gyrus (18) L -30 -92 22 4.29 395 

Cuneus (18) L -12 -88 16 3.30  

Lateral Occipital Gyrus (37) R 32 -54 -16 3.94 129 

Fusiform Gyrus (19) R 30 -64 -14 3.37  

Fusiform Gyrus (37) R 28 -46 -14 3.18  

Lingual Gyrus (17) L -6 -78 8 3.85 233 

Lingual Gyrus (18) L -8 -70 -2 3.34  

Occipital Superior Gyrus (18) R 24 -92 16 3.80 337 

Middle Occipital Gyrus (19) R 36 -80 22 3.46  

Lateral Occipital Gyrus (19) R 28 -82 -16 3.78 70 

Lateral Occipital Gyrus (37) L -28 -60 -16 3.64 126 

Fusiform Gyrus (37) L -26 -48 -14 3.46  

Consistent > Inconsistent (35)       

Corpus Callosum L -2 14 10 3.70 37 

Corpus Callosum R 16 -6 28 3.69 35 

Inconsistent > Consistent (35)       

Superior Temporal Sulcus  (37) R 62 -58 12 4.79 108 

Supramarginal Gyrus (40) R 58 -42 46 3.92 192 

Interparietal Sulcus (7) R 28 -50 42 3.82 65 

Superior Frontal Sulcus (10) R 34 50 10 3.61 62 

Precuneus R 8 -58 48 3.56 99 

Middle Temporal Gyrus (20) R 62 -24 -14 3.49 61 

Middle Temporal Gyrus (21) R 64 -18 -8 3.28  



However, there were two important differences which point to the increased value of our 

modelling analysis. First, the simple contrast GLM did not identify any areas that could be 

explained by agent identity alone as opposed to choice similarity, presumably because the close 

relationship between these two factors meant that the variance in activation was captured by the 

choice analysis instead. Second, this analysis does not capture our finding of the dMPFC area 

which is involved in the tracking of accumulated consistency. Thus while the prediction error 

aspects of our model based analysis can be captured by a more traditional analysis, our use of 

computational modelling has  have additional value in giving greater insight into the mechanism 

behind such activations and in allowing us to additionally understand which brain areas are 

involved in the representation of the current predictions regarding the others consistency in 

similarity.     

S3. dmPFC literature comparison 

To place our findings of accumulated consistency being tracked within the dmPFC in 

context, we identified 15 studies that had found activation in the dMPFC and categorised the 

contrasts those activations came from into the following four categories: 1) Diagnostic > Non-

Diagnostic cases: contrasting information relevant to a trait judgement about an individual with 

irrelevant information; 2) Inconsistent > Consistent: cases contrasting novel information that 

was inconsistent with previous knowledge about an individual with novel information that was 

consistent with previous knowledge; 3) Other Impression Formation: other contrasts relevant to 

impression formation, often linking photographs of individuals with information about their 

traits; 4) Self Relevant: contrasts in which participants judged whether information was self-

relevant or not (see Table S2). We then collapsed the clusters found in these studies across the x-

axis to create Figure S1. Our result falls in the middle of the region activated by previous 

studies, with most contrasts investigating Inconsistent > Consistent falling more dorsally and 

most contrasts investigating Diagnostic > Non-Diagnostic falling more ventrally suggesting that 

the activation found in our study is in agreement with the previous literature.  



Figure S1. dmPFC activations across 15 studies investigating impression formation and the self 

together with the result from the current study. For ease of presentation we have collapsed the 

studies across the x-axis (max x = 14, min x = -13).  

 

Table S2. Details of studies used in the comparison of dmPFC activation across impression 

formation studies (see Figure S1). Coordinates are reported in MNI space and coordinates from 

studies using Talairach space were converted using the WFU PickAtlas version 2.4 (Maldjian, 

Laurienti, and Burdette 2004; Maldjian et al. 2003).  

Study Information presented Impression studied X Y Z 

Current Study (Red) 
 

Choice of preferred 

painting 

Similarity to Self 8 5 34 

Diagnostic > Non Diagnostic (Green)     

Gilron & Gutchess, 2012 Moral and Neutral 

Behaviours 

Moral Impression vs 

Location of Behaviour 

0 57 15 

 Moral and Neutral 

Behaviours 

Moral Impression vs 

Location of Behaviour 

3 48 48 

 Moral and Neutral 

Behaviours 

Moral Impression vs 

Location of Behaviour 

9 72 9 



Ma, Vandekerckhove, Van 

Overwalle, Seurinck, & 

Fias, 2010 

Moral and Neutral 

Behaviours 

Personality Traits 4 54 28 

 
Moral and Neutral 

Behaviours 

Personality Traits 14 48 16 

Inconsistent > Consistent (Pink)     

Cloutier, Gabrieli, Young, & 

Ambady, 2011 

Political Views Political Affiliation 2 54 30 

 Political Views Political Affiliation 6 52 44 

Ma et al., 2012 Moral vs Neutral 

Behaviours 

Moral Traits 4 42 32 

 Moral vs Neutral 

Behaviours 

Moral Traits 4 38 34 

 Moral vs Neutral 

Behaviours 

Moral Traits 4 35 28 

Mende-Siedlecki, Cai, & 

Todorov, 2013 

Moral Behaviours Moral Traits 2 31 40 

Mende-Siedlecki & 

Todorov, 2016 

Moral and Neutral 

Behaviours 

Trustworthiness and 

Surprise 

-5 59 36 

 Moral and Neutral 

Behaviours 

Trustworthiness and 

Surprise 

-2 -5 72 

Other Impression Formation (Blue)     

Ames & Fiske, 2013 Assessment of Teaching 

Ability 

Expertise -4 45 45 

Baron, Gobbini, Engell, & 

Todorov, 2011 

Moral Behaviours Trustworthiness -4 41 36 

Freeman, Schiller, Rule, & 

Ambady, 2010 

Individuated vs 

Superficial for Racial In-

group vs Out-group 

Personality Traits -13 43 4 

Fouragnan et al., 2013 Choices in Trust Games 

and Prior information 

about Trustworthiness 

Trustworthiness -2 64 10 

 Choices in Trust Games 

and Prior information 

about Trustworthiness 

Trustworthiness 0 62 31 



Gilron & Gutchess, 2012 Moral Behaviours vs 

Neutral Behaviours 

Moral Impession vs 

Location of Behaviour 

3 30 42 

Mende-Siedlecki, Baron, & 

Todorov, 2013 

Moral and Ability 

Behaviours 

Competence and 

Trusworthiness 

-5 66 13 

 Moral and Ability 

Behaviours 

Competence and 

Trusworthiness 

32 60 -1 

Mende-Siedlecki, Cai, et al., 

2013 

Moral Behaviours Moral Impression 5 52 51 

Schiller, Freeman, Mitchell, 

Uleman, & Phelps, 2009 

Moral Behaviours Moral Impression -9 24 61 

Schiller et al., 2009 Moral Behaviours Moral Impression -7 52 43 

Self (Yellow)     

Martinelli et al. 2013 Memory Meta-Analysis Semantic Autobiographic 

Memory 

-10 45 18 

 Memory Meta-Analysis Episodic Autobiographic 

Memory 

-6 51 9 

 Memory Meta-Analysis Conceptual Self 6 55 5 

Moran, J.M. et al., 2006 Personality Traits Self-Relevance -6 53 6 

Phan, K.L. et al., 2004 Emotional Pictures Self-Relatedness 0 42 33 

Schneider et al. 2008 Emotional or Neutral 

Pictures 

Self-Relatedness -3 24 66 
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