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Hyperscanning—the recording of brain activity frommultiple individuals—can be hard to interpret. This paper
shows how integrating behavioral data and mutual prediction models into hyperscanning studies can lead to
advances in embodied social neuroscience.
Social interaction is central to our cogni-

tion and our health. Our actions and deci-

sion-making in everyday life are heavily

influenced by others, and atypical social

interactions are a feature of the majority

of psychiatric and mental health condi-

tions. Understanding the brain mecha-

nisms of social interaction is therefore an

important goal for human neuroscience.

Hyperscanning, the measurement of

brain activity from more than one individ-

ual at the same time (Figure 1A), has

recently been hailed as a game-changer

in the study of human social interaction

(Gvirts and Perlmutter, 2019). This paper

takes a critical look at some of the claims

that have been made for hyperscanning

and the limitations of many analyses. We

further suggest that, by integrating data

from brain and behavior, it will be possible

to move beyond the hype and realize the

potential of this new domain. We focus

primarily on functional near-infrared spec-

troscopy (fNIRS; Pinti et al., 2020a)

because fNIRS is one of the most widely

used hyperscanning modalities, but we

also consider EEG and electrophysiology.

A good example of the hyperscanning

genre is an influential paper from Cui and

colleagues (Cui et al., 2012). This study

captured data from the prefrontal cortex

of pairs of participants performing two

distinct tasks: a cooperation task where

both participants must try to press a but-

ton at the same time, and a competition

task where the two participants must try

to press the button as fast as possible.

The participants cannot communicate

directly but receive feedback after each

trial, which enables them to improve their

performance. fNIRS signals from prefron-

tal cortex were analyzed with wavelet

coherence (Figure 1B), which showed

greater coherence in right superior frontal
cortex during the cooperation blocks

compared to competition or solo perfor-

mance. A number of studies have repli-

cated and extended the finding of

coherence in prefrontal cortex when par-

ticipants are engaged in a social interac-

tion, including situations of conversation,

eye contact, decision-making, and motor

coordination tasks (Fishburn et al., 2018).

Furthermore, differences in the strength

of cross-brain coherence have been

seen in ingroup compared to outgroup

pairs (Yang et al., 2020), in mixed gender

pairs compared to within gender pairs,

and in relation to autistic traits in children

(reviewed in Pinti et al., 2020a).

Based on these results, some strong

claimshavebeenmade for the importance

of hyperscanning in cognitive neurosci-

ence and psychiatry. For example, brain-

to-brain coupling has been described as

a ‘‘mechanism for transmitting informa-

tion. regarding remote events’’ (Hasson

et al., 2012) or as a ‘‘mechanism of shared

intentionality’’ (Fishburn et al., 2018). One

paper suggests that brain-to-brain

coupling ‘‘might trigger the neural mecha-

nism guiding social alignment’’ (Gvirts and

Perlmutter, 2019). It has been suggested

that hyperscanning measures might allow

us todiagnosedevelopmental andpsychi-

atric disorders (Leong and Schilbach,

2019) and that using brain stimulation to

impose coupling on participants might

even treat such disorders (Gvirts and Perl-

mutter, 2019). These are ambitious claims

for an emerging technology and deserve

careful and detailed examination.

Understanding Coherence between
Brains
Hyperscanning studies clearly show that

there are robust patterns of coherence

across brains, but the best way to inter-
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pret this data is less clear. Claims that

there is a mechanism extending across

more than one brain can feel like telep-

athy, disconnected from our standard

models of cognition or from a plausible

biological framework. To obtain a better

understanding of what cross-brain coher-

ence actually means and the challenges

faced by this new domain, it helps to first

understand some basic limitations of

coherence measures. First, these mea-

sures describe the relationship between

two time series of data, but do not take

into account any other factors: changes

in participant behavior or the task or

testing environment do not feature in

most coherence analyses. Second,

coherence measures show only symmet-

rical effects, where both brains show the

same pattern of change. Many social in-

teractions (e.g., giving/taking an object,

turn-taking in conversation) are asym-

metric, with two participants having

different roles, but it is not clear if coher-

ence analysis can capture this. Third, the

relationship between hyperscanning re-

sults and traditional models of cognition

is not clear—because the analysis is spe-

cific to the two-person situation, hyper-

scanning studies sometimes do not

examine or interpret the one-person con-

trasts that a traditional cognitive neurosci-

entist might expect to see.

An even more important challenge for

the interpretation of hyperscanning data

is the relationship between cross-brain

coherence in hyperscanning (Figure 1A)

and inter-subject correlations recorded

in sequential studies (Figure 1C). We

know that two people each viewing the

same movie alone in an MRI scanner

show similar brain activity patterns and

that this effect is even seen if one person

tells a story and the other listens (Hasson
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Figure 1. Key Concepts in Hyperscanning
(A) Most hyperscanningmethods record brain activity from two ormore participants at the same time and examine the relationship between brain activity patterns
using correlations or coherence analyses.
(B) An example of wavelet coherence patterns (from Cui et al., 2012). Brain activity over a block of trials is broken down into frequency bands with a wavelet
function, and the coherence across the two brains is calculated at each time point and frequency, with redder colors indicating more coherence. Coherence
values are typically averaged over the whole block within a particular frequency band, here 3.2–12.8 s.
(C) Studies of inter-subject correlation record from two participants exposed to the same stimulus (e.g., a movie) at different times and also calculate the cor-
relation between them. Both methods consider only brain data (not behavior), and one challenge is that it is hard to distinguish hyperscanning results from inter-
subject correlations.
(D) Studies in embodied social neuroscience collect data on brain activity, behavior, and physiology for two participants simultaneously.
(E) Themutual prediction theory explainswhy similar patterns of brain activity are seen in both participants. If each person’s brain contains neurons encoding self-
behavior (A-self, B-self) and encoding a prediction of their partner’s behavior (A-other, B-other), the sum of activity in BrainA will be similar to the sum of activity in
BrainB.
(F) Multimodal data can be analyzed using a cross-brain GLM, which models activity in one person’s brain in terms of all other available factors. Beh, behavior;
Phys, physiology (i.e., heartbeat and breathing).
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et al., 2012). These results reflect the fact

that common cognitive processing of an

external stimulus can give rise to coher-

ence between brains. As recently pointed

out for EEG data (Burgess, 2013), coher-

ence in fNIRS could arise because both

participants respond in the same way to

common environmental stimuli. Thus, it

could be argued that the robust coher-

ence patterns reported in many hyper-

scanning studies reveal the similar pro-

cessing of the shared environment and

common task set experienced by the

two participants and not any additional

social factors.
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There are two feasible responses to the

challenge of common processing. One is

to design more complex methods that

factor out the common effects. Several

studies do this by increasing the number

of participants tested. For example, if a

study records data from three (or more)

people who are in the same room at the

same time, and two of those participants

show strong coherence while the others

do not, it is hard to argue that thematched

sensory environment is driving the coher-

ence (Fishburn et al., 2018; Yang et al.,

2020). However, it remains possible that

common motor processing or common
cognitive processing between the inter-

acting participants drives these effects.

A second option is to accept the argu-

ment that fNIRS hyperscanning can only

measure common processing between

two brains and use this as relevant

outcome. Studies of individual differences

in coherence levels or studies of coher-

ence across social groups typically take

the overall coherence level as an index

of how well people are coordinating.

Recent data shows that this can correlate

with performance on a social decision-

making task (Yang et al., 2020). Such

studies typically require very large sample
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sizes in order to relate dyad-level differ-

ences in coherence to dyad-level differ-

ences in behavior. However, it may be

hard or impossible to pin down any effects

to one person in the pair. This limits the

usefulness of coherence analyses for the

tracking or diagnosis of clinical popula-

tions, where results must be robust at a

single subject level and it must be

possible to define which individual within

a pair or group is showing atypical brain

activity. Finally, if coherence measures in

a hyperscanning context really are

measuring exactly the same thing as in-

tersubject correlations used in an fMRI

context, then asking participants to watch

a movie alone might give more robust and

repeatable results for clinical use.

The pioneering studies of human hyper-

scanning have made an important contri-

bution in showing what can be done in a

new domain. However, the limitations

described above mean that the claim

that hyperscanning will revolutionize so-

cial neuroscience might seem like just

hype. If coherence measures are unable

to consider behavior or relate to tradi-

tional models and cannot distinguish

interaction from common processing,

then the value of hyperscanning might

seem limited.

Embodied Mutual Prediction
To move beyond the hype, we may need

to do bigger, better experiments and

interpret them within a stronger theoret-

ical framework. An important starting

point is the recognition that interacting

brains exist within interacting bodies. Vi-

sual, auditory, and motor processes

mediate any coordination between two

brains, so we must study brains and

bodily coordination together. This means

that labs must capture and analyze

behavioral data from their participants,

considering how each individual in a so-

cial interaction uses their actions to signal

to others and receives social information

from others. There are now an increasing

number of flexible technologies available

to capture participants’ hand and body

movements, eye movements, facial ex-

pressions, and physiological changes,

and such systems should be standard in

a hyperscanning lab (Figure 1D). These

tools also mean that it is possible, even

desirable, to move away from traditional

experimental designs where discrete tri-
als are repeated many times. Such

methods give tight control to an experi-

menter but do not create a natural and

meaningful social interaction where par-

ticipants can engage in a variety of social

behaviors. Moving toward more natural

task scenarios, where people can work

together over a longer period of time,

observing each other and responding to

each other, might reveal different patterns

of social behavior or social brain activity

that are suppressed in the controlled lab

situation. By capturing and analyzing

data from both brain and body while par-

ticipants are engaged in natural interac-

tions, it will be possible to understand

how the coordination of social brains is

embodied in the interaction of social

bodies.

We also need a neurocognitive theory

within which to understand this kind of

interaction. A strong candidate emerges

if we focus on what participants are actu-

ally doing during a social interaction. They

must control their own motor behavior,

moving hands, face, and gaze to interact

with their partner, and they must also un-

derstand and predict their partner’s motor

behavior in order to act appropriately.

Both acting and predicting are very gen-

eral requirements—whether people are

cooking a meal together, playing a piano

duet, or taking turns in conversation, the

requirement to predict one’s partner and

perform one’s own action is essential to

a fluent social interaction. This idea has

recently been formalized in the mutual

prediction theory (Kingsbury et al., 2019).

The central claim here is that each individ-

ual in a social interaction has brain sys-

tems that control their own behavior (A-

self and B-self in Figure 1E) as well as

brain systems that predict the behavior

of their partner (A-Other and B-Other in

Figure 1E). If these systems are co-local-

ized in the brain and all the neural activity

of both systems is summed for a crude

measure, then there will be a pattern of

similarity or coherence between the over-

all brain activity of individual A and individ-

ual B. Thus, when prediction mechanisms

that operate within the brain of a single in-

dividual are engaged in two people who

mutually predict each other, this can

give rise to signals that are coherent

across the two brains.

Evidence in support of mutual predic-

tion theory was found in a detailed study
of pairs of interacting mice. Kingsbury

and colleagues used microendoscopic

calcium imaging to record from hundreds

of neurons in the dorsomedial prefrontal

cortex (dmPFC) of pairs of micewhile their

behavior was tracked in natural social in-

teractions. They identified neurons that

encoded the mouse’s own actions and

other neurons that encoded the actions

of the partner mouse, consistent with the

mutual prediction model. More impor-

tantly, the summed activity across the

PFC showed coherence across the two

animals, demonstrating that mutual

prediction at a fine-grained level can

give rise to patterns of cross-brain coher-

ence at a whole-brain level. Furthermore,

they could quantify the asymmetry in the

social relationship between the mice,

with subordinate mice showing more pre-

diction of their partner than dominant

mice. Data were analyzed by adding

behavioral data and cross-brain data to

a traditional general linear model (GLM)

in order to model the activity of one indi-

vidual’s brain in terms of both their

behavior and their partner’s behavior

and brain activity (cross-brain GLM or

xGLM; Figure 1F). The outputs of this an-

alyses allow the researcher to quantify the

contribution of each different factor within

the model (self-behavior, other-behavior,

task, and cross-brain contributions) and

can be interpreted in relation to traditional

cognitive neuroscience. Thus, the xGLM

analysis allows researchers to integrate

data across different modalities in freely

moving animals engaged in a social inter-

action and test the mutual prediction

hypothesis in a tractable fashion.

To test if mutual prediction also applies

in humans, it will be useful to use xGLM

approaches in modeling data from human

hyperscanning studies. Initial hints that

this can work are seen in a recent study

(Pinti et al., 2020b) in which pairs of partic-

ipants play a card game similar to poker—

one participant has the role of informer

and can choose to lie or tell the truth about

her card, while her partner must guess if

the card is high or low and will win points

for a correct answer. Activity across pre-

frontal cortex in the informer was linked

to deceptive intent. More critically, an

xGLM analysis with a range of time lags

identified two channels in the informer’s

brain where activity patterns reliably pre-

ceded similar activity in the guesser’s
Neuron 109, February 3, 2021 3
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brain with a 2 s time lag. This provides a

clue to mutual prediction in humans, but

unfortunately this study used a taskwhere

it is very challenging for participants to

accurately predict each other (thus mak-

ing it hard to see mutual prediction sig-

nals) and did not record behavioral or

physiological factors in sufficient detail

to implement a full xGLM approach.

Future studies that directly contrast coop-

erative and competitive tasks with and

without the ability to predict and with

more detailed recordings of social

behavior will be very valuable.

These two studies provide initial evi-

dence that the mutual prediction theory

can account for patterns of cross-brain

coherence in both mice and humans

engaged in a social interaction. The the-

ory can also help us understand older da-

tasets like the original hyperscanning

study from Cui et al., (2012) described

above. That study compared a ‘‘coopera-

tion’’ task to a ‘‘competition’’ task and has

sometimes been interpreted in terms of

cross-brain mechanisms of cooperation.

However, close examination of the cogni-

tive demands of the tasks shows that the

cooperation task requires a high degree

of mutual prediction—participants must

predict each other’s movements in order

to act at the same time. In contrast, the

competition task requires participants to

move as fast as possible, and predicting

the partner would only be a distraction.

Thus, the differences in cross-brain

coherence patterns between these two

tasks are entirely consistent with the

mutual prediction hypothesis. It is

possible to make the further prediction

that cross-brain coherence would not be

seen if participants engaged in a cooper-

ation task that does not demand mutual

prediction, such as winning points if both

people move faster than an external limit.

Overall, studies of mutual prediction

demonstrate that examining brain and

behavior together helps us understand

how bodily actions mediate and imple-

ment social interactions. Within this idea,

themutual prediction hypothesis provides
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a strong framework to interpret hyper-

scanning studies of human and animal

social interactions and has several advan-

tages. First, it proposes a specific predic-

tive mechanism that causes cross-brain

coherence based on detailed animal

data and in line with more general predic-

tive models of cognition. Second, it moti-

vates and enables the integration of brain

and behavior into a unified model in which

the social brain is working to predict and

enact social behavior. Third, the xGLM

approach to data analysis builds on a

long tradition of research in cognitive

neuroscience, allowing us to extend exist-

ing models to include behavioral and

cross-brain data and model both sym-

metric and asymmetric interactions. This

means it will be feasible to analyze data

from a wider range of contexts and inte-

grate new hyperscanning results with

our fundamental theories of cognitive

neuroscience. Finally, the examples

above demonstrate how the study of in-

teracting brains and bodies together can

be applied across both controlled lab set-

tings and unstructured ecologically valid

interactions, allowing us to move social

neuroscience research into the real world.

Future Directions
This short review has described the chal-

lenges of interpreting cross-brain coher-

ence data and suggests two new ways

to overcome these challenges. In terms

of designing research, if we can collect

and integrate data from interacting bodies

(hands, faces, eyes, speech) as well as

interacting brains, then we have the po-

tential to understand how embodied inter-

actions cause cross-brain coherence

effects. The analysis of data with xGLMs

provides one way to accomplish this inte-

gration, but other methods such as

Granger causality might also be valuable.

In terms of neural mechanisms, the

mutual prediction hypothesis gives us a

clear framework within which to interpret

data from different cognitive tasks, as

well as make specific predictions for

future research studies. By combining
these advances with new methods for

tracking and interpreting natural social

behavior, it will be possible for hyperscan-

ning to go beyond the recent hype and to

reveal neurocognitive mechanisms that

support our human face-to-face social

interactions.
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