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Functional near-infrared spectroscopy (fNIRS) research articles show a large

heterogeneity in the analysis approaches and pre-processing procedures. Additionally,

there is often a lack of a complete description of the methods applied, necessary for

study replication or for results comparison. The aims of this paper were (i) to review and

investigate which information is generally included in published fNIRS papers, and (ii) to

define a signal pre-processing procedure to set a common ground for standardization

guidelines. To this goal, we have reviewed 110 fNIRS articles published in 2016 in the

field of cognitive neuroscience, and performed a simulation analysis with synthetic fNIRS

data to optimize the signal filtering step before applying the GLM method for statistical

inference. Our results highlight the fact that many papers lack important information, and

there is a large variability in the filtering methods used. Our simulations demonstrated

that the optimal approach to remove noise and recover the hemodynamic response

from fNIRS data in a GLM framework is to use a 1000th order band-pass Finite Impulse

Response filter. Based on these results, we give preliminary recommendations as to the

first step toward improving the analysis of fNIRS data and dissemination of the results.

Keywords: functional near infrared spectroscopy, digital filter, general linear model, pre-processing

standardization, functional data analysis, pre-processing guidelines

INTRODUCTION

The last few years have seen a rapid (almost exponential) growth in the number of functional
neuroimaging studies performed and published with functional near-infrared spectroscopy
(fNIRS) (Yücel et al., 2017). fNIRS has provided neuroscientists and clinicians with a novel
and invaluable tool to study and monitor tissue oxygenation changes in the brain non-
invasively. Based on neurovascular coupling, fNIRS measures the brain tissue concentration
changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) associated with an increased
metabolic demand of the brain during neuronal activity, and an increased tissue perfusion
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(Scholkmann et al., 2014). To date, one of the major fields
of application of fNIRS is cognitive neuroscience, where
the mechanisms underlying brain functioning are typically
investigated by monitoring the task or stimulus-evoked changes
in the brain during the execution of cognitive tasks (see Pinti
et al., 2018 for review). fNIRS is well-suited to this application
since it allows the study of cognition with very few physical
constraints, allowing brain monitoring in a wide range of
cognitive tasks, e.g., those including bodily movements, and in
a variety of populations, e.g., infants, healthy adults, clinical
patients. A typical sequence of steps performed in a neuroscience
with fNIRS is shown in Figure 1, usually comprising 4 main
steps.

Step 1: The first step is the design and implementation of the
experimental protocol. Block or event-related designs are usually
employed, in which the stimuli are presented several times to
increase the statistical power, and experimental task periods
are typically interspersed with contrast conditions or stimuli
(or in some cases rest periods) to better assess the presence of
hemodynamic responses. fNIRS data are then collected during
the execution of the designed experiment. A mixed block/event-
related design can be also employed (Petersen and Dubis, 2012).

Step 2: The data acquisition step comprises the placement of
a certain number of light sources and detectors (i.e., “optodes”)
on the participants’ head by means of fiber optics, and at a light
source-detector distance of 3 cm in case of studies with adults.
The raw fNIRS signal measured by the detector, e.g., the raw
light intensity signal, originates from the tissue volume located
below the source and detector having a maximal depth a bit less
than half the source-detector distance [i.e., this is called “channel”
(Patil et al., 2011)]. The number of channels and the sampling
frequency of the acquisition depend on the particular fNIRS
instrument used.

Step 3: During the pre-processing phase, the raw intensity
data are usually visually inspected to assess signals’ quality
(e.g., the presence of large motion artifacts, and of heart beat
oscillations indicating a good optical coupling between the
optodes and the scalp). Intensity time-series are converted
into changes in attenuation (or optical density, 1OD) and
then into concentration changes of HbO2 and HbR (1HbO2

and 1HbR), usually by means of the modified Beer-Lambert
law (Delpy et al., 1988). In order to extract useful information

FIGURE 1 | Typical neuroscience experiment pipeline with fNIRS.

from fNIRS data, any source of variability in the 1HbO2 and
1HbR signals not related to the task-evoked hemodynamic
activity needs to be removed, or at least minimized. For a
review on the structures and the statistical properties of the
noises that are often present in fNIRS data, we advise the
reader to see the publication of Huppert (2016). One typically
experienced source of noise is that due to head movements. In
fact, although fNIRS is more robust to motion artifacts than
other modalities [e.g., functional magnetic resonance imaging
(fMRI), electroencephalography/magnetoencephalography
(EEG/MEG)], signals can be corrupted by head movements,
causing fast spikes or shifts from the baseline values. The most
common practice to deal with these motion errors is to include
the identification and correction of such artifacts as a step in
the signal pre-processing stream. Several techniques have been
proposed so far and have been reviewed elsewhere (Brigadoi
et al., 2014). In addition, fNIRS data are also contaminated
by physiological noises not directly related to cortical brain
activity that can deteriorate the Signal-to-Noise Ratio (SNR),
and mask and/or mimic the presence of brain hemodynamic
responses (Tachtsidis and Scholkmann, 2016). The origin of
these components and the methods developed so far to reduce
their impact on the estimation of brain activity by fNIRS
have been reviewed by Scholkmann et al. (2014). Briefly, such
physiological changes contribute a large amount of variance to
the fNIRS signals and can be elicited both (i) by the execution of
the cognitive task, and (ii) spontaneously. In the first case, the
execution of particularly complex or stressful tasks can affect the
psychophysiological state of the participant, resulting in changes
in heart rate, breathing rate, blood pressure, carbon dioxide
(CO2) concentration of the blood and autonomic regulatory
activity happening both at the intra- and extra-cerebral
levels (Rowley et al., 2006; Kirilina et al., 2012; Scholkmann
et al., 2013; Holper et al., 2014; Tachtsidis and Scholkmann,
2016); the second case refers to the spontaneous hemodynamic
oscillations related to physiological vasomotor regulations and
breathing-related fluctuations (Tachtsidis et al., 2004; Tong
et al., 2012). These spontaneous components are characterized
by signals at specific frequencies associated with the heart rate
(∼1Hz), breathing rate (∼0.3Hz), Mayer waves (∼0.1Hz), and
very low frequency (< 0.04, VLF) oscillations. One of the most
common and more straightforward approaches used by the
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scientific community to reduce the impact of these components,
is to remove specific frequency bands in fNIRS signals by means
of digital filters. Digital filtering is a mathematical procedure
applied to discrete time-series to reduce or enhance certain
properties of the input signals (e.g., frequency ranges). Filters
are divided into three classes: (i) high-pass filters, which remove
high frequency components above the cut-off frequency; (ii)
low-pass filters, which remove low frequency components below
the cut-off frequency; (iii) band-pass filters, which preserve the
frequency range between a lower and a higher cut-off frequency.
Some research groups apply filters on 1OD data prior the
conversion into concentration changes; others apply the filter
on the 1HbO2 and 1HbR signals. However, in both cases,
the frequency range to include needs to be chosen carefully in
order to preserve the stimulus frequency and to preserve the
task-evoked response.

Step 4: Once the data are pre-processed, statistical analyses
are performed, and the pre-processed 1HbO2 and 1HbR
signals are used to make inference about task-evoked functional
brain activity (see Tak and Ye, 2014 for a review). One of
the most common statistical frameworks employed by the
community is the General Linear Model (GLM). This approach
has more statistical power than other methods commonly used
for fNIRS (e.g., block averaging). In fact, the GLM considers
the entire fNIRS time series taking advantage of the high
temporal resolution of fNIRS. It also provides good flexibility as
it allows to test specific hypothesis by comparing combinations
of the experimental conditions with different statistical testing
approaches (e.g., t-tests, F-tests, ANOVAs, ANCOVAs; Monti,
2011). In addition, it permits the inclusion of other covariates
within the model or design matrix [e.g., behavioral performance,
head movement, physiological signals, short-separation fNIRS
channels (Tachtsidis and Scholkmann, 2016)] to improve the
inference accuracy. However, the GLM has the disadvantage
that it assumes a specific pre-defined hemodynamic response
function, which e.g., to a great extent is still unknown for
neonates or might be different across brain regions.

It is important to highlight how the experiment pipeline
described above (Figure 1) is not made of stand-alone steps. Each
phase influences the other and, more importantly, they influence
the outcome of the statistical analyses and the study results. For
instance, if the experimental protocol is not carefully designed
and, for example, a task block duration of ∼10 s is chosen,
the task frequency (∼0.1Hz) overlaps with the Mayer wave
oscillation, leading to inflated statistics. Additionally, the pre-
processing stream has a major impact also on the comparison of
results among different studies and research groups, and on study
replication, because the statistical analyses depend on the data
content. It is therefore extremely important and good practice
to always report detailed information about each individual
step of the experiment pipeline (Figure 1), from the protocol
specification (type of stimuli, structure, durations, presentation
software), the device features (model, sampling frequency,
wavelengths), signal pre-processing (algorithm to compute
1HbO2 and 1HbR, motion artifact correction algorithm, filter
parameters), to the statistical analyses (hypotheses, statistical
test).

Whilst all these procedures are almost standardized for other
neuroimaging modalities such as fMRI, this is not the case for
fNIRS yet. As recently highlighted by Hocke et al. (2018), fNIRS
publications often lack useful information, and there is a huge
variability in the analysis procedures and in the way methods are
described. For instance, the absence of standardization of input
parameters for fNIRS pre-processing and analysis methods can
lead to suboptimal papers or irreproducible studies and results.
In addition, the authors demonstrated how the use and the
combination of different methods (e.g., criteria for identifying
noisy channels, motion artifact correction, signals’ filtering, etc.)
can lead to different results, influencing the neuroscientific
conclusions. Another relevant issue is related to the best fNIRS-
derived signal to infer functional brain activity, as fNIRS provides
measurements of both HbO2 and HbR. For example, some
papers draw neuroscientific conclusions based only on 1HbO2.
But, others report total hemoglobin (1HbO2 +1HbR), and
yet others describe both 1HbO2 and 1HbR. Therefore, there
is an urgent need to move toward a standardization of the
experimental procedures, right through from the study design
phase to the presentation of results. The aim of the current
report is to start tackling this standardization issue and to set
the ground for the development of toward common guidelines.
More precisely, in this work we focus (i) on the filtering step
of the pre-processing phase and (ii) on the assessment of the
completeness of the information reported in the published
research articles. To this end, we first review the papers published
in 2016 in the field of functional neuroimaging with fNIRS
to analyse information on (i) the latest most used filtering
approaches and (ii) the data inclusiveness. Then, we test the
identified filter specifications on synthetic fNIRS data generated
from 18 subjects resting state data with a superimposed task-
related component simulating a block-design experiment, and
explore the effect of filters and their application to 1OD or
1HbO2 and 1HbR on the outcome of statistical analyses in
order to optimize the inference procedure in a GLM-based
framework.

LITERATURE REVIEW

A literature review of fNIRS articles published in the field of
cognitive neuroscience was performed as first step with the aim
of identifying the most common filtering approaches adopted
by the community, and of evaluating the completeness of the
information reported in research papers. To this end, we used
the PubMed database, plus a manual search from articles,
references, and the publication surveys made available by the
Society for functional Near Infrared Spectroscopy (http://fnirs.
org/publications/nirs-niri-publications/). Articles were selected
on the basis of the following criteria:

1. Papers published in 2016, in order to review the most updated
and advanced pre-processing approaches as a representative
sample of the fNIRS field

2. Original research articles published on peer-reviewed
journals. Conference proceedings and review papers were
excluded from further analyses
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3. Studies conducted on adults, as infants’ fNIRS data have
different spectral characteristics [e.g., a higher heart rate
frequency band (von Siebenthal et al., 1999)] and thus
different filtering specifications must be used

4. Papers that included task-evoked functional activation
experiments, as fNIRS is by far mostly used for monitoring
task-related brain activity in response to cognitive tasks

5. Our analysis included only continuous-wave (CW) fNIRS
studies looking at concentration changes of oxy- and deoxy-
hemoglobin due to the popularity of CW-fNIRS in current
fNIRS research and neuroscience applications.

A total of 110 papers were selected (see
Supplementary Material 4 for a complete list). From each
full-text, we collected the following information (Figure 2):

1. the sampling frequency (Fs) of the fNIRS acquisition
2. the inclusion of the filtering step in the pre-processing stream
3. the type of filtered signal (1OD or 1HbO2 and 1HbR)
4. the type of filter applied (e.g., Butterworth, finite impulse

response (FIR), Moving Average)
5. the filter characteristic (low-pass (LP), high-pass (HP), band-

pass (BP) filtering)
6. the filter order, where applicable
7. the cut-off frequencies (Fc)

Note: If the authors stated in the paper that they used the
Homer2 software package (http://homer-fnirs.org/) for their
analysis and did not report any information about the filter type,
we automatically considered they used a 3rd order Butterworth
filter as this is the default option in the software. Papers including
more than one functional experiment within the same work were
considered as separate studies.

Out of the 110 papers, 75.5% of the articles reported the Fs of
the fNIRS acquisition (Figure 2A).

This result suggests that not all the papers report all the
relevant information necessary for replicating or comparing
the study results. Indeed, the Fs is an important parameter to
evaluate the frequency bandwidth of the fNIRS signals or for
assessing the filter stability within a certain frequency range.
Additionally, as Figure 2C shows, there is not a clear agreement
about whether it is a better practice to filter the optical density
data or concentration data, and the fNIRS community is divided

between the two approaches. In fact, for the papers we analyzed,

the filter is applied on 1OD signals in 32.5% of the studies and
on1HbO2 and1HbR in 65%. The remaining 2.5% of the papers
did not include this information.

Concerning the use of filters, the 72.7% of the papers included
a filtering step in the pre-processing pipeline (Figure 2B).
Figure 2D shows the distribution of the filter types across
these papers. With “Generic” (Figure 2D) we refer to those
filters for which the authors did not mention the particular
filter type (e.g., ‘. . . data were band-pass filtered. . . ’). The filter
types shown in Figure 2D were both used individually or
in combination with each other (e.g., W-MDL together with
HRF). Within the majority of the papers (36.3%), the filter
type was not properly described (i.e., Generic), further proving
that not all the articles provide the most salient information,

hence making it difficult for others to replicate the same
procedure.

For the following analyses, we focused on the filter types
being used in more than 3 papers (1.8%, Figure 2D, red
rectangle), these are the Generic, Butterworth (BW), Moving
Average (MovAvg) and Finite Impulse Response (FIR) filters.
Among these filters, we determined how many articles included
information about:

• the type of filter (LP/HP/BP, where applicable, i.e., Generic,
BW, FIR)

• the filter order (where applicable, i.e., Generic, BW, FIR)
• the cut-off frequency ranges (where applicable, i.e., Generic,

BW, MovAvg, FIR)

Results are presented in Figures 2E–H. Encouragingly enough
only 1.6% of the papers did not include information about
the type of filters (Figure 2E). Figure 2E also illustrates the
distribution of the filter characteristics, showing that BP and LP
are more often used rather than HP filters. However, concerning
the filter orders (Figure 2F), the majority of the papers (59.7%)
did not provide information about this parameter, which is really
important for filters design. For our further analyses (see section
Data Analysis), we have focused on BP and LP filters (Figure 2E
red rectangle) since they are the most popular; and on all the
filter orders (3, 4, 5, 20, Figure 2F red rectangle). Regarding
the cut-off frequencies (Figures 2G,H), authors usually reports
these except for the lower Fc for one BP filter (Figure 2G)
and for 8.1% of the LP filters (Figure 2H). For our tests (see
section Data Analysis), we used the Fc adopted by at least 3
papers (1.8%) and we indicated those with red rectangles in
Figures 2G,H.

MATERIALS AND METHODS

Participants
In order to investigate the effects of the filters on the outcome
of statistical analyses, resting-state fNIRS data were collected
on a cohort of healthy adults. Sixteen individuals (9 females, 7
males; age = 26.9 ± 2.9 years) were recruited and 18 sessions
were performed. Prior the experiment, participants acclimated
for about 15min within the testing room. During the experiment,
they were asked to keep their eyes closed for the entire session
while being awake. The study was approved by the UCL ethics
committee (Reference 1133/001) and participants gave informed
consent prior to the experimental session.

fNIRS Data Acquisition
Spontaneous changes in prefrontal cortex hemodynamics were
measured using the Wearable Optical Tomography (WOT,
Hitachi High-technologies Corporation, Japan) fNIRS device.
The system is made of a portable box, containing the
recording unit, and a headset, containing the optical components
(Figure 3A). The headset is equipped with 6 laser diodes emitting
light at 705 and 830 nm, and 6 silicon photodiodes (Atsumori
et al., 2009), arranged in an alternating geometry creating 16
measurement channels (Figure 3B; source-detector separation:
3 cm). Raw fNIRS data were recorded at 5Hz. In order to place
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FIGURE 2 | Summary of the literature review results: inclusion of (A) the Fs and of (B) a filtering step in the studies; proportion of the filtered signals (C), filter type (D),

filter characteristics (E), filter order (F), Fc of band-pass (G) and low-pass (H) filters across the papers that included a filtering step. (BP, band-pass; LP, low-pass).
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FIGURE 3 | (A) Hitachi Wearable Optical Tomography fNIRS device, and corresponding channels configuration onto the prefrontal cortex (B). Sources are

represented as red dots, detectors as blue dots and channels as white dots. Highlighted in green are the channels for which the corresponding time-series are

presented in (C). (C) shows examples of raw 1HbO2 and 1HbR resting-state signals for one channel for each of three participants.

the WOT headset in a reliable way across all the participants,
we used the 10/20 electrode positioning system (Okamoto
et al., 2004) and placed channel 8 in correspondence of the
Fpz point and channel 8 and 9 were aligned to the Nasion-
Inion line. Resting-state data were collected for ∼10min while
participants were comfortably sitting on a chair with their eyes
closed. Examples of resting-state data for one channel from three
subjects are shown in Figure 3C.

Data Analysis
Single-subject’s data analysis flowchart is presented in Figure 4.

Raw time-series were visually inspected to detect noisy
channels (e.g., due to large motion errors, sudden amplitude
changes, poor coupling) and channels with a poor optical
coupling [e.g., absence of the∼1Hz heartbeat oscillations in raw
signals (Pinti et al., 2015)] were excluded from further analyses.
Raw resting-state fNIRS data were first converted into optical
density data and then into changes in concentration through
the modified Beer-Lambert law, using a differential pathlength
factor of 6 (Yücel et al., 2016). For all channels, a synthetic task-
related component (the same for all 16 channels) simulating
a block-design experiment was added to both 1HbO2 and
1HbR signals. This was created by convolving a Hemodynamic
Response Function (HRF) with a boxcar function reflecting the
simulated experimental protocol. The HRF was composed of
two gamma functions, the positive one modeling the response

and the negative one modeling the undershoot (peak: 6 s
and undershoot: 16 s after the onset); the boxcar included
14 task blocks of 20 s spaced out by 20 s rest periods. This
resulted in a stimulation frequency (Fstim) of 0.025Hz (Fstim
= 1/(20+20) Hz). We used different amplitudes for the HbO2

and HbR task-related components, with the HbR one being
∼-1/3 of the HbO2 component, as HbR has smaller changes
than HbO2 (Gagnon et al., 2012). More precisely, in order to
generate signals with different SNR, we considered the following
amplitudes:

1. Amplitude 1: 0.8 µMol for 1HbO2 and −0.27 µMol for
1HbR

2. Amplitude 2: 0.5 µMol for 1HbO2 and −0.17 µMol for
1HbR

3. Amplitude 3: 0.3 µMol for1HbO2 and−0.1 µMol for1HbR

Three different synthetic datasets were thus generated for each of
the 18 resting-state data.

Synthetic 1HbO2 and 1HbR signals were re-converted into
1OD data and motion artifacts were identified and corrected
(Figure 4) using the targeted principal component analysis
(tPCA Yücel et al., 2014) implemented in the Homer2 software
package, as it acts only on corrupted data segments, thus
not altering the frequency content of the signals (function:
hmrMotionCorrectPCArecurse; input parameters: tMotion = 0.5,
tMask= 1, STDthresh= 10,AMPthresh= 5, nSV = 0.97,maxIter
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FIGURE 4 | Data analysis flow chart applied to each participant and to each task-related component amplitude. The procedure is also applied for each filter type and

specification combinations.
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= 5). Optical density data corrected for motion errors were
converted into 1HbO2 and 1HbR.

Based on the literature review (see section Literature Review),
we filtered both synthetic 1OD and, 1HbO2 and 1HbR signals
using the filter specifications summarized in Table 1. All the Fc
ranges include our Fstim (0.025Hz). Filter orders of 100, 500,
1000 were also included in addition to the ones found in the
literature, as FIR filters require higher orders than IIR filters
(i.e., Butterworth) to achieve a good level of performance. More
precisely, for each type of filter, we used all the combinations of
filter type, filtered signals, filter order, and Fc.

Whilst FIR filters are always stable (i.e., for a finite input,
the output is always finite, and the region of convergence of
the transfer function of the filter includes the unit circle), IIR
filters can be unstable for a given order and Fc (Ifeachor and
Jervis, 2002). In fact, considering the transfer function of the
filters, FIR filters have as many poles as zeros but they are all
located at the origin of the z-plane, thus being always stable;
by contrast, IIR filters are stable only if the poles are inside the
unitary circle in the z-plane. Moving average filters operate by
averaging the input signal within a certain window to produce the
output signal. They are a particular type of low-pass FIR filters
where the output signal is not multiplied by filter coefficients,
but it is only scaled by 1/(window length). MovAvg are thus also
always stable. Therefore, we first checked the stability of BP and
LP Butterworth filters since they are IIR, for all the Fc and orders,
using the zero-pole analysis, i.e., looking at the location of poles
in the z-plane (for this procedure we used the Matlab functions
butter, isstable, and zplane). Once the stability was assessed, we
applied the type of filter with all the possible combination of
specifications to synthetic1OD and,1HbO2 and1HbR signals.
Filtered 1OD were then converted into concentration changes.
We will refer to 1HbOC

2 and 1HbRC if the filter was applied
directly to concentration data, and to 1HbOOD

2 and 1HbROD

if the filter was applied to optical density data and then converted
into concentration changes. In addition to the filters’ stability,
the phase delay introduced by the filter needs to be taken into
account. In fact, the filtered signal can be shifted in time respect
to the original unfiltered signal. In case of a FIR filter, the phase
delay is constant, i.e., the same across the whole frequency range,
and can be corrected by shifting back in time the filtered signal
of the delay amount. With IIR filters (i.e., Butterworth), the
phase delay is frequency-dependent, i.e., the shift is different for
the different frequencies. This phenomenon is known as phase
distortion and can be compensated using a zero-phase filter that
we performed in Matlab with the filtfilt function.

Filtered concentration data were used to carry out statistical
analyses and to establish the best filtering approach. The
procedure described below was applied for each task-related
component amplitude, to each channel of each participant’s
filtered signal (1HbOC

2 , 1HbRC, 1HbOOD
2 , 1HbROD), each

type of filter (BP and LP), and each filter specification
combination (Table 1). Statistical analyses were performed using
the GLM approach (Figure 4). This method consists of regressing
fNIRS data with a linear combination of explanatory variables
(or regressors) and an error term. Regressors are computed
through the convolution of the boxcar function describing the

TABLE 1 | Type of filter and filer specifications resulting from the literature review

process.

FILTER CHARACTERISTIC: BP

Filter type BW, FIR

Filtered signals 1OD, 1HbO2, 1HbR

Filter order 3, 4, 5, 20, 100*, 500*, 1000*

Fc [Hz] 0.01–0.09, 0.01–0.2, 0.01–0.3, 0.01–0.5

FILTER CHARACTERISTIC: LP

Filter type BW, FIR, MovAvg

Filtered signals 1OD, 1HbO2, 1HbR

Filter order 3, 4, 5, 20, 100*, 500*, 1000*

Fc [Hz] 0.09, 0.1, 0.14, 0.5

Asterisks indicate filter orders that were further added.

experimental protocol with the HRF (Friston et al., 1994). In
our case, the design matrix was composed of the task-related
regressor modeling the hemodynamic response to the simulated
block-design experiment, plus the constant term. β-values were
estimated through the least square estimation. These parameters
are indicators of the strength of the relationship between a
regressor and the experimental fNIRS data, and represent the
contribution of each regressor to the fNIRS signal. However,
fNIRS data are affected by serial autocorrelations due to the
oscillating nature of the fNIRS signals (Barker et al., 2016) that
impact on the accuracy of GLM-based analyses (Ye et al., 2009).
Autocorrelations originate from the high sampling rate of fNIRS
acquisition and from the physiological noises and motion errors
present in the signals (Barker et al., 2016; Huppert, 2016). To
account for serial autocorrelations and to minimize their impact
on the GLM, we used two approaches: (i) down-sampling, and
(ii) precoloring. In the first approach, we down-sampled the
filtered concentration data to 1Hz using a spline interpolation to
reduce the sampling rate. Down-sampling the signal before the
filter is applied can introduce a form of distortion in the data
called aliasing, especially at the high-frequencies and when the
new sampling rate is smaller than twice the highest frequency of
interest in the signal (Nyquist frequency). To avoid this issue,
low-pass filters (i.e., anti-aliasing filter) are typically used to
remove the components above the new Nyquist frequency. In
the second approach, we applied the precoloring method, i.e.,
smoothing the fNIRS data and the design matrix with a low-
pass filter shaped like the HRF (Worsley and Friston, 1995;
Huppert, 2016), which is a common method for analyzing fMRI
and fNIRS data (Worsley and Friston, 1995; Ye et al., 2009). In
order to test the impact of serial autocorrelations, we applied
the GLM also to the filtered concentration data without any of
these corrections (Figure 4). For each participant’s data, the GLM
was applied to each channel and each chromophore individually.
β-values were then estimated for each channel and the median β-
value across the 16 channels was computed for each participant.
Median β-values for all the subjects were used to run statistical
analyses at group-level. More precisely, we first checked for (i) the
normality of the distribution of the group median β-values using
the Shapiro-Wilk test as recommended for small sample sizes
(Shapiro et al., 1968; Ghasemi and Zahediasl, 2012;< 50), and (ii)
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the presence of outliers. We considered as outliers when the β-
values are below Q1− 1.5× IQR or above Q3+ 1.5× IQR (Q1:
1st quartile; Q3: 3rd quartile; IQR: interquartile range). Amplitude
1, Amplitude 2 and Amplitude 3 of the imposed task-related
components constitute the reference β-values and represent the
metric to assess filters’ performance. In fact, the closer are the
estimated β-values to the reference β , the better the filter, i.e.,
less task-related information and more physiological noise were
removed. Therefore, in order to establish the best type of filter,
we used one sample t-tests to test the null hypothesis that the
estimated groupmedian β-values are equal to the reference β at a
significance level α = 0.05. The closer the p-value to α, the more
the group β-values are similar to the reference β , and thus the
better the filter performance.

Additionally, we tested whether the filter performs better if
applied to optical density or concentration data. To this goal,
we used paired sample t-tests to compare the group β-values
estimated on 1HbOC

2 and 1HbRC with the group β-values
estimated on 1HbOOD

2 and 1HbROD, for a given type of filter
and specification combinations.

All the analyses were carried out using Matlab (The
MathWorks Inc., Natick, Massachusetts; v. R2014a) and the
Homer2 software package.

RESULTS

Examples of synthetic iconcentration data for a representative
participant and channel generated using task-related
components with Amplitude 1, Amplitude 2, and Amplitude 3
are shown in Figure 5.

Due to the poor coupling between the fNIRS headset and
the head, channel 11 was excluded from further analyses
for participant 11, and channel 14 and 16 were excluded
for participant 18. Synthetic datasets simulating a block-
design experiment with 20 s task blocks were used to test
the performance of filters in reducing the unwanted noise
components in the fNIRS signals and in preserving the task-
evoked hemodynamic response. To achieve this, we applied the
type of filters and filter specifications summarized in Table 1 to
the synthetic datasets. More precisely, we filtered both the 1OD
and, 1HbO2 and 1HbR time-series to determine the best signal
to filter to obtain correct statistics. Prior the application of these
filters, we tested the stability of BW filters for data sampled at
5Hz using the zero-pole analysis, i.e., looking at the location
of the poles of the filter transfer function with respect to the
unitary circle in the z-plane. Filters with poles located within the
unitary circles were considered stable. The procedure was applied
to all the combinations of orders and Fc and to both BP and
LP BW filters. Results for BP and LP filters are summarized in
Figures 6A,B respectively. Green squares indicate stable filters,
red elements indicate unstable filters.

For instance, a BW BP filter for data sampled at 5Hz with
order 5 and Fc = [0.01 0.2] Hz results stable as all the poles of
the transfer function are inside the unitary circle (Figure 6C),
whereas the same BW with order 20 is unstable (Figure 6D).

Figure 7 shows an example of filtered 1HbOC
2 and 1HbRC

signals using a BW BP filter (5th order, Fc: 0.01–0.2Hz,
Figures 7A,B), FIR BP filters (5th order, Fc: 0.01–0.2Hz,
Figures 7C,D) and FIR BP filters (1000th order, Fc: 0.01–0.2Hz,
Figures 7E,F) to synthetic 1HbO2 and 1HbR, demonstrating
the need for higher orders for FIR filters respect to IIR filters. The
corresponding estimated β-values are reported as well.

Whilst the 5th order BW BP filter was able to remove
the slow drifts in the unfiltered 1HbO2 and 1HbR signals
(Figures 7A,B), a FIR filter with order 5 is not effective enough
(Figures 7C,D). In fact, very low frequency modulations in the
filtered1HbO2 signal can still be observed as well as a slow trend
in the filtered 1HbR (Figures 7C,D) and both signals are not
centered around the zero-level. This results in an overestimation
of the β-values (9.28 × 10−7 for 1HbO2 and of −3.38 × 10−7

for 1HbR). As a property of FIR filters, they require much
higher orders than IIR filters to achieve comparable performance.
As expected, with a 1000th order FIR filter, slow trends are
effectively removed (Figures 7E,F), the signal mean is reported
to be around the zero-level and a similar performance of the
5th order BW filter is achieved (light green and cyan signals in
Figures 7E,F). The improvement in filters’ performance is also
reflected in the estimated β-values. The 1000th order FIR filter
corresponds to a β-value of 7.51 × 10−7 for 1HbOC

2 and of
−2.27 × 10−7 for 1HbRC that are more similar to the reference
β (8 × 10−7 for 1HbO2 and of −2.7 × 10−7 for 1HbR) than
the estimated β-values for the 5th order FIR filter (β-value =

9.28 × 10−7 for 1HbOC
2 ; β-value = −3.38 × 10−7 for 1HbRC).

More precisely, the β-values for the 5th order FIR filter are higher
than the reference β because the slow trends of the signals were
not removed effectively, worsening the GLM-fitting. The 1000th
order FIR filter also performs similarly to the 5th order BW BP
filter for which the β-values are 7.58 × 10−7 for 1HbOC

2 and of
−2.26× 10−7 for 1HbRC, demonstrating that FIR filters require
higher orders than IIR to achieve comparable performance.

For each task-related component amplitude, and each type of
filter and filter specification,1HbOC

2 and1HbRC, and1HbOOD
2

and 1HbROD were used to run statistical analyses by means
of the GLM approach. Since GLM-based analyses of fNIRS
data can be influenced by serial autocorrelations, β-values were
estimated (i) with no correction for serial correlations, (ii) down-
sampling to 1Hz the filtered data, (iii) using the precoloring
method. The corresponding median β-values computed for each
participant across the 16 measurement channels were used to
assess filters performance. To achieve this, we first checked
for the normality of the group β-values distribution using the
Shapiro-Wilk test, testing the null hypothesis that median β-
values are normal at significance level α = 0.05. Results referring
to BP filters, Amplitude 1 and 1HbOC

2 obtained using the
precoloring method are shown in Table 2 and in Table 3 for
1HbRC. The corresponding normality test results for LP and BP
filters, all amplitudes, 1HbOOD

2 and 1HbROD are included in
Supplementary Material 1.

Median β-values were normally distributed for BW filters
(p> α) according to the Shapiro-Wilk normality test. By contrast,
for 1HbOC

2 the null hypothesis of normal distribution was
rejected (p < α) for all the FIR filters with an order < 500
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FIGURE 5 | Examples of synthetic 1HbO2 (red) and 1HbR (blue) signals for one channel of a representative participant. The black signal represents the task-related

component with Amplitude 1 (A), Amplitude 2 (B), and Amplitude 3 (C) added to the concentration data.

FIGURE 6 | Results of the filter stability for the BP BW filters (A) and LP BW filters (B) for all the combination of orders and Fc. Green and red squares indicate stable

and unstable filters, respectively. (C,D) show examples of filter stability analysis considering a BW BP filter with Fc = [0.01 0.2] Hz. The filter results stable for a filter

order 5 (C), as the poles are inside the unitary circle as shown in the zoom. By contrast, with an order: 20 (D) the filter becomes unstable. Zeros are indicated by blue

circles and poles by red crosses.
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FIGURE 7 | Examples of filtered 1HbOC
2 and 1HbRC signals with Amplitude 1 for one channel of a representative participant using a 5th order BW BP filter (A,B, red

and blue signals), a 5th order FIR BP filter (C and D, green and magenta signals), and a 1000th order FIR BP filter (E,F, light green and cyan signals) within the range

[0.01, 0.2] Hz. The estimated β-values from the GLM fitting of the filtered 1HbOC
2 and 1HbRC are included. The reference β are 8 × 10−7 for 1HbO2 and of −2.7 ×

10−7 for 1HbR.

(Table 2) and with an order < 200 for 1HbRC (Table 3). In
fact, as also shown in Figure 7, FIR filters require higher orders
to effectively remove unwanted noise. For instance, with lower
orders, slow trends in the signals related to e.g., instrumental
noise or spontaneous physiological fluctuations are not properly
filtered, introducing variability in the group β-values, since
these types of noise can differ from subject to subject. As
1HbR is less influenced by physiological interferences (Kirilina
et al., 2012; Zhang et al., 2016) and there is thus less inter-
subject variability, FIR filters with orders > 200 for are effective
enough for 1HbR. This variability results in outliers that alter
the β-values distribution, as it can be observed in the box-
plots in Supplementary Figures 9, 10 (Supplementary Material
2) referring to the data in Tables 2 and 3, respectively. The
normality assumption is not violated when an order > 500 for
1HbO2 and order > 200 for 1HbR is used for FIR filters

and no outliers are present (Supplementary Figures 9, 10 in
Supplementary Material 2), further demonstrating the need of
high orders.

The same is true for LP filters (Table 4 for 1HbOC
2 , and

Table 5 for 1HbRC), where median β-values never follow a
normal distribution for any filter. In fact, especially in this case,
slower signal modulations related to instrumental noise and
slow vascular regulations are not filtered out since LP filters
only attenuate noise with higher frequency content than the Fc
reported in Table 1.

In fact, outliers can be found for all the three filter
types (Supplementary Figures 11, 12 in Supplementary Material
2). This also results in an overestimation of the β-values
since the noise amplifies the signal amplitude and change its
dynamics. This applies for all amplitudes and filtered signals
(Supplementary Materials 1, 2). The use of LP filters on their
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TABLE 2 | Shapiro-Wilk test results computed on 1HbOC
2 BP filtered data, with Amplitude 1.

Order/Fc 0.01–0.09 Hz 0.01–0.2 Hz 0.01–0.3 Hz 0.01–0.5 Hz

W(18) p W(18) p W(18) p W(18) p

BW

3 0.91 0.10 0.91 0.07 0.91 0.07 0.90 0.07

4 0.92 0.14 0.91 0.08 0.91 0.08 0.91 0.08

5 - - 0.93 0.21 0.93 0.20 0.93 0.19

20 - - - - - - - -

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

4 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

5 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03

20 0.77 9.85E-04 0.77 9.96E-04 0.77 1.01E-03 0.77 1.04E-03

100 0.77 1.09E-03 0.78 1.44E-03 0.78 1.43E-03 0.78 1.43E-03

200 0.85 1.14E-02 0.85 1.18E-02 0.85 1.17E-02 0.85 1.16E-02

500 0.92 1.09E-01 0.91 9.55E-02 0.91 9.23E-02 0.91 9.11E-02

1000 0.91 8.16E-02 0.91 7.44E-02 0.91 7.34E-02 0.91 7.34E-02

W-values and corresponding p-values are reported. p < 0.05 are underlined, meaning that the null hypothesis that the β-values are normally distributed is rejected at significance level

α = 0.05. Results are not reported in case of unstable filters. ‘-’ indicates unstable filters for which the Shapiro-Wilk test was not carried out.

TABLE 3 | Shapiro-Wilk test results computed on 1HbRC BP filtered data, with Amplitude 1.

Order/Fc 0.01–0.09 Hz 0.01–0.2 Hz 0.01–0.3 Hz 0.01–0.5 Hz

W(18) p W(18) p W(18) p W(18) p

BW

3 0.95 0.48 0.95 0.50 0.95 0.50 0.95 0.48

4 0.95 0.51 0.95 0.44 0.95 0.47 0.95 0.48

5 - - 0.95 0.50 0.95 0.47 0.95 0.47

20 - - - - - - - -

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03

4 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03

5 0.81 3.32E-03 0.81 3.32E-03 0.81 3.32E-03 0.81 3.33E-03

20 0.81 3.11E-03 0.81 3.16E-03 0.81 3.23E-03 0.81 3.35E-03

100 0.82 4.25E-03 0.83 6.28E-03 0.83 6.25E-03 0.83 6.13E-03

200 0.94 2.97E-01 0.94 3.01E-01 0.94 3.01E-01 0.94 2.97E-01

500 0.93 1.76E-01 0.93 2.06E-01 0.93 2.09E-01 0.93 2.10E-01

1000 0.96 6.04E-01 0.96 6.04E-01 0.96 6.03E-01 0.96 6.01E-01

W-values and corresponding p-values are reported. p < 0.05 are underlined, meaning that the null hypothesis that the β-values are normally distributed is rejected at significance level

α = 0.05. Results are not reported in case of unstable filters. ‘-’ indicates unstable filters for which the Shapiro-Wilk test was not carried out.
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TABLE 4 | Shapiro-Wilk test results computed on 1HbOC
2 LP filtered data, with Amplitude 1.

Order/Fc 0.09 Hz 0.1 Hz 0.14 Hz 0.5 Hz

W(18) p W(18) p W(18) p W(18) p

BW

3 0.77 1.04E-03 0.77 1.04E-03 0.77 1.03E-03 0.77 1.04E-03

4 0.77 1.05E-03 0.77 1.05E-03 0.77 1.03E-03 0.77 1.04E-03

5 0.77 1.08E-03 0.77 1.06E-03 0.77 1.04E-03 0.77 1.04E-03

20 - - - - - - 0.77 1.04E-03

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

4 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

5 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03

20 0.77 9.84E-04 0.77 9.85E-04 0.77 9.88E-04 0.77 1.03E-03

100 0.76 8.65E-04 0.77 9.39E-04 0.77 1.03E-03 0.77 1.05E-03

200 0.77 1.02E-03 0.77 1.05E-03 0.77 1.04E-03 0.77 1.05E-03

500 0.77 1.02E-03 0.77 1.05E-03 0.77 1.04E-03 0.77 1.04E-03

1000 0.77 1.04E-03 0.77 1.05E-03 0.77 1.04E-03 0.77 1.04E-03

MovAvg

0.77 1.03E-03 0.77 1.03E-03 0.77 1.04E-03 - -

W-values and corresponding p-values are reported. p < 0.05 are underlined, meaning that the null hypothesis that the β-values are normally distributed is rejected at significance level

α = 0.05. Results are not reported in case of unstable filters and Fc = 0.5Hz that corresponds to a null window length for the MovAvg filter. ‘-’ indicates unstable filters for which the

Shapiro-Wilk test was not carried out.

own has thus not enough performance for denoising fNIRS data
so that LP filters were excluded from further analyses.

Concerning the filter performance, we used one-sample t-
tests to compare the group β-values to the reference β for each
amplitude, filtered signals, type of filter and filter specifications.
In addition, this was done for data not corrected for serial
correlations, corrected through down-sampling and precoloring
(Supplementary Material 3). In Table 6 and Table 7 we report
the results referring to the β-values computed on 1HbOC

2 and
1HbRC data corrected through the precoloring method, for
Amplitude 1.

For our experimental design with the Fstim of 0.025Hz, we
found that the best compromise across the three amplitudes,
filtered signals, and in terms of outliers (Tables 2 and 3) is
to use a BP FIR filter with order 1000 and Fc = [0.01, 0.09]
Hz (Supplementary Material 3). In fact, the Fc range is more
centered and narrower around the Fstim than the other Fc
ranges (Table 1), and includes both the Fstim and the following
two harmonics (2 × Fstim and 3 × Fstim), maximizing the
hemodynamic content and removing unnecessary frequency
components. These filter specifications generally correspond to
smallest t-value that means more similarity to the reference
β , i.e., a better recovery of the hemodynamic response.
Concerning the correction for serial autocorrelations, we found
that the best results were obtained using the precoloring
method (Ye et al., 2009), as the median β-values are more
similar to the reference β for all the three amplitudes

respect to the median β-values computed with no correction
and down-sampling (Supplementary Material 3). This further
establishes the precoloring as an effective way of accounting for
autocorrelation in fNIRS signal and a fundamental step for GLM
analyses (Ye et al., 2009).

We did not find statistically significant differences
(p > 0.05) between corresponding β-values computed on
1HbOOD

2 /1HbROD and 1HbOC
2 /1HbRC, suggesting that it

does not make any difference if the filter is applied to 1OD data
prior the conversion in concentration changes or to 1HbO2 and
1HbR (Supplementary Material 3).

DISCUSSION

Since fNIRS is one of the most recent neuroimaging modalities,
there is no agreement yet about the way of analyzing data and
describing the methodological details in research articles. We
have identified 110 papers published in 2016 which reported
task-related investigation of brain activity with fNIRS to identify
the most common missing information that is critical for any
study replication or comparison. More precisely, we found that
nearly ¼ of the papers did not report the sampling frequency
of the fNIRS acquisition, which is important for defining some
preprocessing parameters (e.g., filters’ cut-off frequencies). More
than a half of the reviewed papers used BP filters to denoise fNIRS
data and nearly half employed LP filters. Among the articles using
BP filters, 24 different Fc were proposed with the most common
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TABLE 5 | Shapiro-Wilk test results computed on 1HbRC LP filtered data, with Amplitude 1.

Order/Fc 0.09 Hz 0.1 Hz 0.14 Hz 0.5 Hz

W(18) p W(18) p W(18) p W(18) p

BW

3 0.81 3.38E-03 0.81 3.38E-03 0.81 3.38E-03 0.81 3.34E-03

4 0.81 3.36E-03 0.81 3.37E-03 0.81 3.38E-03 0.81 3.34E-03

5 0.81 3.37E-03 0.81 3.37E-03 0.81 3.38E-03 0.81 3.34E-03

20 - - - - - - 0.81 3.34E-03

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03

4 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03

5 0.81 3.32E-03 0.81 3.32E-03 0.81 3.32E-03 0.81 3.33E-03

20 0.81 3.11E-03 0.81 3.11E-03 0.81 3.13E-03 0.81 3.34E-03

100 0.80 2.60E-03 0.81 3.05E-03 0.81 3.42E-03 0.81 3.40E-03

200 0.82 3.65E-03 0.82 3.72E-03 0.81 3.47E-03 0.81 3.41E-03

500 0.81 3.48E-03 0.81 3.51E-03 0.81 3.43E-03 0.81 3.36E-03

1000 0.81 3.58E-03 0.81 3.49E-03 0.81 3.42E-03 0.81 3.35E-03

MovAvg

0.81 3.31E-03 0.81 3.32E-03 0.81 3.33E-03 - -

W-values and corresponding p-values are reported. p < 0.05 are underlined, meaning that the null hypothesis that the β-values are normally distributed is rejected at significance level

α = 0.05. Results are not reported in case of unstable filters and Fc = 0.5Hz that corresponds to a null window length for the MovAvg filter. ‘-’ indicates unstable filters for which the

Shapiro-Wilk test was not carried out.

being [0.01, 0.5] Hz (18.4% of the papers), and themost employed
filter type was not defined (i.e. Generic, 36.3%) followed by
Butterworth filters (28.8%). In terms of LP filters, a Fc of 0.09Hz
was most often used. However, important filtering parameters
are very often missing in articles (see section Literature Review),
especially the filter type (36.3%, Figure 2D) and the filter order
(59.7%, Figure 2F). These are extremely important information
that must be explicitly included in research papers to allow their
full replication and understanding. In addition, there is not an
agreement either on the filter type (Figure 2D) and the best signal
to filter (Figure 2C).

In order to clarify these aspects and to start setting the ground
for common practice in filtering and analyzing fNIRS data, we
investigated the performance of the most frequently used band-
pass and low-pass filters in terms of their influence on the
outcome of the statistical inference step (Figure 1) in a GLM
framework. The main findings of our simulation analysis using
synthetic fNIRS data were:

(1) there is no difference in outcome of the statistical analyses
in terms of filtered signals (optical density or concentration,
Supplementary Material 3)

(2) low-pass filters and FIR filters with low orders (<500)
are not effective in removing the physiological VLF
components and slow trends in the fNIRS signals, resulting
in higher inter-subjects variability that impacts on group-
level statistical analyses (section Materials and Methods,

Supplementary Materials 1, 2, 3). LP filters should thus be
combined with HP filters or detrending approaches (e.g.,
linear detrending) to remove very slow trends and VLF from
fNIRS data

(3) the best signal denoising is achieved using a BP FIR filter with
high orders (e.g., >1000)

(4) better results and more suitable statistics are obtained when
correcting the GLM-analysis for serial correlations by means
of the precoloring method (Supplementary Material 3).

Here, we have only tested three different types of filters with some
specifications based on the most common practices adopted
by the community. Further studies are needed that explore
additional filtering methods in case of e.g., event-related design
and block-design experiments with variable durations, and using
additional parameter specifications. In the following section,
we provide some recommendations and guidelines that we
believe could help users in designing an appropriate filter for
fNIRS data and in disseminating the research procedures in
articles.

RECOMMENDATIONS FOR FILTER
DESIGN AND THE WAY FORWARD

Figure 8 shows the flow-chart of practical steps (A-E)
that we advise to follow to design an effective filter for
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TABLE 6 | One sample t-test results computed on 1HbOC
2 BP filtered data, with Amplitude 1, comparing the group median β-values to the reference β, in case of

precoloring correction.

Order/Fc 0.01–0.09 Hz 0.01–0.2 Hz 0.01–0.3 Hz 0.01–0.5 Hz

t(17) p t(17) p t(17) p t(17) p

BW

3 −5.12 8.59E-05 −5.10 8.98E-05 −5.09 9.04E-05 −5.11 8.69E-05

4 −5.32 5.62E-05 −5.22 6.87E-05 −5.22 6.93E-05 −5.25 6.49E-05

5 - - −5.09 9.04E-05 −5.20 7.25E-05 −5.20 7.27E-05

20 - - - - - - - -

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.80 4.32E-01 0.88 3.91E-01 0.99 3.36E-01 1.32 2.04E-01

4 0.82 4.25E-01 0.95 3.57E-01 1.14 2.71E-01 1.68 1.12E-01

5 0.83 4.17E-01 1.03 3.18E-01 1.31 2.09E-01 2.05 5.58E-02

20 1.38 1.85E-01 3.11 6.32E-03 3.94 1.05E-03 2.35 3.13E-02

100 1.43 1.72E-01 −5.95 1.59E-05 −5.99 1.45E-05 −5.98 1.48E-05

200 −10.37 9.04E-09 −10.63 6.29E-09 −10.67 5.90E-09 −10.74 5.41E-09

500 −5.76 2.32E-05 −5.93 1.66E-05 −5.93 1.66E-05 −5.93 1.66E-05

1000 –4.73 1.93E-04 −4.93 1.27E-04 −4.92 1.28E-04 −4.92 1.29E-04

Underlined is the highest negative t-value obtained for a 1000th order BP FIR filter. The t-value is negative as the reference β (0.8) is higher than the group median β-values (0.7).

‘-’ indicates unstable filters for which the t-test was not carried out.

TABLE 7 | One sample t-test results computed on 1HbRC BP filtered data, with Amplitude 1, comparing the group median β-values to the reference β, in case of

precoloring correction.

Order/Fc 0.01–0.09 Hz 0.01–0.2 Hz 0.01–0.3 Hz 0.01–0.5 Hz

t(17) p t(17) p t(17) p t(17) p

BW

3 4.94 1.23E-04 4.82 1.61E-04 4.85 1.49E-04 4.88 1.41E-04

4 5.15 8.06E-05 5.06 9.67E-05 5.05 9.95E-05 5.01 1.07E-04

5 - - 4.96 1.19E-04 4.98 1.13E-04 4.94 1.25E-04

20 - - - - - - - -

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 −3.05 7.31E-03 −3.12 6.24E-03 −3.23 4.94E-03 −3.55 2.45E-03

4 −3.06 7.12E-03 −3.18 5.42E-03 −3.37 3.63E-03 −3.90 1.16E-03

5 −3.07 6.90E-03 −3.26 4.58E-03 −3.54 2.54E-03 −4.27 5.22E-04

20 −3.59 2.26E-03 −5.28 6.12E-05 −6.10 1.19E-05 −4.55 2.81E-04

100 −3.65 1.99E-03 3.71 1.76E-03 3.75 1.59E-03 3.74 1.64E-03

200 10.09 1.35E-08 10.48 7.79E-09 10.52 7.33E-09 10.59 6.65E-09

500 5.36 5.23E-05 5.56 3.49E-05 5.55 3.54E-05 5.55 3.54E-05

1000 4.01 9.05E-04 4.24 5.49E-04 4.23 5.61E-04 4.22 5.71E-04

Underlined is the lowest positive t-value obtained for a 1000th order BP FIR filter. The t-value is positive as the reference β (-0.27) is smaller than the group median β-values (−0.24).

‘-’ indicates unstable filters for which the t-test was not carried out.
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FIGURE 8 | Digital filter design flow-chart.

fNIRS data. Here, we consider 1HbO2 and 1HbR as
the signals to filter, but the same flow-chart applies to
1OD.

More precisely, the steps are the follows:
Step A) Frequency content assessment: the first step we advise

to perform is to evaluate the frequency content of fNIRS signals.
This will allow the identification of the stimulus frequency band
to preserve and of the physiological noise components (e.g., heart
rate, respiration, Mayer waves) to remove. To this goal, there
are different algorithms that can be used to e.g., compute the
Fast Fourier Transform (FFT) of the signal or the Power Spectral
Density (PSD). For instance, in Figure 9 we used the Welch’s
estimation method to compute the PSD (function: pwelch;
window length: 120 s; overlap: 50%) of the synthetic 1HbO2

and 1HbR signals to assess the physiological noises frequency
ranges to remove. The PSD shows how the power of a signal is
distributed as a function of frequency. From the PSD of the fNIRS
signals of a representative participant (Figure 9), we can identify
the heart rate component (∼1.3Hz), the respiration component
(∼0.25Hz), and the Mayer wave component (∼0.09Hz); these
are frequencies that we want to remove. We can also identify the
stimulation frequency (Fstim = 1/40 s = ∼0.025Hz in our case)
that we want to preserve; and that guides the choice of the Fc of
the filter.

Step B) Filter characteristic: the first choice to make prior to
designing a filter is the filter characteristic (BP/LP/HP). Based
on the literature review (see section Literature Review) and our
results, a BP filter achieves the highest performances in the
outcome of statistical analyses. In fact, a LP filter alone is not
enough as it does not remove the VLF frequencies corresponding
to the very low vasomotion regulations and instrumental noise
(e.g., low trends) (see section Materials and Methods).

Step C) Filter type:Different BP filters are available (e.g., FIR or
IIR). Based on our results (see Section Materials and Methods),
we recommend the use of BP FIR filters as they are (i) more
stable and hence easier to control than IIR filters (i.e., the output
is always finite), and (ii) do not introduce phase distortions and
phase shift across the whole frequency band.

Step D) Cut-off frequencies selection: For BP filters, two cut-off
frequencies must be selected. The lowest Fc (Fc, low) will allow the
frequencies higher than Fc, low to pass. The highest Fc (Fc, high)
will allow the frequencies lower than Fc, high to pass. In this way,
Fc, low and Fc, high define the passband of the BP filter, i.e. the
frequency range that can pass through the filter (Figure 10A).

The cut-off frequency choice is a compromise between noise
reduction and hemodynamic signal maximization. In fact, whilst
it is relatively easy to remove e.g., the heart rate component
and the VLF such as those related to vascular endothelial
regulations [<0.01 (Yücel et al., 2016)], other components [e.g.,
Mayer waves or vascular neurogenic regulations (∼0.04Hz Yücel
et al., 2016)] might overlap or be very close to the stimulation
frequency. This must be taken into consideration when designing
the experimental protocol, e.g., avoiding 10 s blocks overlapping
the Mayer waves frequency and using variable rest durations.
We also have to consider that it is impossible to design ideal
digital filters (Figure 10A) where the filter amplitude response
is rectangular with very sharp passband edges that allow an
exact separation between passband and stopband and e.g., a
precise separation between stimulation and noise frequencies. In
reality, one also has to consider the transition band (which will
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FIGURE 9 | Example of 1HbO2 and 1HbR signals with Amplitude 1 for one channel of a representative participant in the time domain (left panel) and frequency

domain (right panel). The PSD transforms the fNIRS signal from the time domain into the frequency domain. This allows the identification of the noise components

(heart rate, breathing rate, Mayer waves) and the stimulation component, as shown in the left panel.

FIGURE 10 | Filter amplitude response for ideal filters (A) and real filters (B).

depend on the filter order and type, see Step E and Figure 10B),
which includes the frequency components that are progressively
attenuated from −3 dB (i.e., the Fc) to the total attenuation
of the filter. Therefore, some of the signal’s frequencies outside
the passband will be attenuated and will still pass through the
filter.

In our case with 20 s task-rest periods, the stimulation
frequency (0.025Hz) does not overlap with the Mayer wave
component (∼0.09Hz). In this way, based on Figure 9, we can
set Fc, high = 0.09Hz so that the Mayer wave, breathing rate,
heart rate components can be filtered out, and we include also
the second and third harmonic of the fundamental stimulation
frequency (i.e., 2 × Fstim and 3 × Fstim) that still have substantial
information. In terms of Fc, low, Fc, low = 0.01Hz is typically
used (Figure 2). It allows to effectively remove very slow trends
and vascular endothelial regulations (Yücel et al., 2016) in
fNIRS signals, as slow as 100 s, and to preserve the stimulation

frequency as task block/event durations smaller than 100 s are
typically used. In case of stimulation protocols in which brain
activity is expected to be sustained for periods longer than 100 s,
then a smaller Fc, low should be used. Neurogenic regulations
(∼0.04Hz) can be difficult to remove as they are really close to
our stimulation frequency (0.025Hz). By choosing a passband
in the range [0.01, 0.09] Hz (Figure 11A), we can ensure that
the stimulation frequency falls within the flat passband region
(0 dB attenuation; Figure 10B) and is not attenuated, and
that additional unnecessary components are not preserved. For
instance, if higher Fc, high is used such as 0.6Hz (Figure 11B)
and 1.2Hz (Figure 11C), higher frequency oscillations in the
signals are included, worsening the GLM-fitting as shown
by the estimated β-values that are more dissimilar to the
reference β (8 × 10−7 for 1HbO2 and of −2.7 × 10−7 for
1HbR) than the ones obtained with the range [0.01, 0.09] Hz
(Figure 11A).

Frontiers in Human Neuroscience | www.frontiersin.org 17 January 2019 | Volume 12 | Article 505

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Pinti et al. Investigation of fNIRS Signals Filtering

FIGURE 11 | Examples of filtered 1HbO2 (red) and 1HbR (blue) signals with Amplitude 1 for one channel of a representative participant. Unfiltered 1HbO2 and 1HbR

are presented in black. β-values (in red for 1HbO2 and in blue for 1HbR) are included as well. (A) shows properly filtered 1HbO2 and 1HbR data (BP FIR filter, order

= 1,000, Fc = [0.01, 0.09] Hz) where the stimulation frequency (0.025Hz) is correctly included in the Fc range, so that the hemodynamic response component is

preserved and the β-values are the closest to the reference (8 × 10−7 for 1HbO2 and of −2.7 × 10−7 for 1HbR). (B,C) present filtered 1HbO2 and 1HbR (BP FIR

filter, order = 1,000) with wider passband ranges (Fc = [0.01, 0.6] Hz and Fc = [0.01, 1.2] Hz, respectively) that let pass also unnecessary higher frequency noise (i.e.,

faster oscillations in the signals) that worsen the fit with the GLM approach. (D), wrongly filtered 1HbO2 and 1HbR data (BP FIR filter, order = 1,000, Fc = [0.01 0.015]

Hz) are presented, where the stimulation frequency (0.025Hz) is not included in the Fc range, and the hemodynamic response component is strongly attenuated.

Including the stimulation frequency in the flat passband—
and in the passband in general—is extremely important to avoid
removing the hemodynamic responses that can correctly pass
through the filter (Figure 11A). If the Fc, high is lower than the
stimulation frequency, for instance Fc, high = 0.015Hz as shown
in Figure 11D, the task-related component is strongly attenuated
and can lead to false negatives in the statistical inference step, as
proven by the very small β-values compared to the reference β .

In case the stimulation protocol has different task-rest
durations, a stimulation frequency range [Fstim_min Fstim_max]
must be identified and preserved. Fstim_min is the inverse of the
maximum block duration (e.g., the maximum rest duration+ the
maximum task duration); Fstim_max is the inverse of theminimum
block duration (e.g., the minimum rest duration+ the minimum
task duration);

Step E) Order selection: In order to minimize the transition
band (Figure 10B) and make the filter response more similar to
the response of an ideal filter (Figure 10A), high filter orders

should be used. This is not always possible with IIR filters
because, as demonstrated in Figure 6, they can become unstable
with higher orders in certain passband ranges. On the contrary,
FIR filters are always stable and high orders can be used to
maximize the performance. Based on our analyses, effective
filtering can be achieved with order = 1000. Through the use of
a high order and a passband with a range of [0.01, 0.09] Hz, we
obtain a filter that has a flat passband region (0 dB attenuation)
including the stimulation frequency and a narrow transition band
(Figure 12; for illustration purposes, the frequency axis limit is
set at 0.2Hz).

For an effective filter design and to choose appropriate filters
parameters, a useful tool is to look at the amplitude response
of the filter [e.g., using the Matlab function freqz or the filter
visualization tool (FVtool)] to optimize the passband based
on the task design and the transition band. For instance, a
sharper transition band can be achieved increasing the filter
order (i.e., the higher the order, the higher the slope of the
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response in the transition band). Different formulas have been
proposed for the estimation of the optimal FIR filter order
to meet the design specification. The two oldest ones are
the Kaiser’s (Kaiser, 1974) and the Hermann-Rabiner-Chan’s
(Herrmann et al., 1973) formulas. The Kaiser’s formula is the
simplest and expresses the filter order as inversely proportional
to the transition bandwidth (function kaiserord in Matlab). The

FIGURE 12 | Filter amplitude response considering a BP FIR filter with order =

1000 and Fc = [0.01, 0.09] Hz.

estimation accuracy can decrease when the band ripples are not
equal and the passband and stopband are very narrow respect to
the transition band. Hermann-Rabiner-Chan’s formula provides
a solution for equiripple filters with either very narrow or very
wide bandwidth. However, both formulas were optimized for
filter orders smaller than ∼150 and only for FIR filters with odd
orders or length. New estimation methods were later proposed,
e.g., Ichige et al. (2000) (Ichige et al., 2000), to overcome the
abovementioned limitations.

Besides the optimization of fNIRS signals preprocessing, there
are other aspects that have to be taken into consideration
to improve the information communicated within the fNIRS
papers. Following the experimental stream in Figure 1, we
summarized in Figure 13 the workflow that we think should be
applied when conducting a typical neuroscience experiment with
fNIRS. More importantly, for each stage of the process, we have
indicated in red the information that we recommend to use and
report in the methods section of any fNIRS research article.

Our recommendations refer to basic procedures and the
workflows shown in Figures 12, 13 can be expanded with
further improvements, such as integrating fNIRS measurements
with simultaneous systemic physiology recordings or using
short-separation channels to allow a better interpretation of
fNIRS neuroimaging data and to formulate more accurate
neuroscientific conclusions (Tachtsidis and Scholkmann, 2016).
For instance, these measurements can be easily integrated in
the GLM framework as additional regressors in the design
matrix, making this approach even more powerful and versatile.
Moreover, other approaches can be included as an additional step
between phase 3 and phase 4 of the workflow in Figure 13, such
as the principal component spatial filter developed by Zhang and

FIGURE 13 | Basic workflow to conduct a typical neuroscience experiment with fNIRS. Information and parameters that we advise to report in research papers are

indicated in red and the ones we recommend to use are presented in green.
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colleagues (Zhang et al., 2016) to remove the global systemic
effects from fNIRS data, or combining the HbO2 and HbR
signals in e.g., the activation signal [through the correlation-
based signal improvement (Cui et al., 2010)], total hemoglobin
(HbT = HbO2 + HbR) or hemoglobin difference [Hbdiff =

HbO2 – HbR (Tachtsidis et al., 2009)] and use the combined
signal to carry out the statistical inference. However, the present
workflows (Figures 12, 13) represent the starting point toward
an improvement and standardization of fNIRS studies that could
guide the community through all the phases of a neuroscience
experiment with fNIRS.
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