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Abstract 

The development of novel miniaturized wireless and wearable functional Near-Infrared 

Spectroscopy (fNIRS) devices have paved the way to new functional brain imaging that 

can revolutionize the cognitive research fields. Over the past few decades, several studies 

have been conducted with conventional fNIRS systems that have demonstrated the 

suitability of this technology for a wide variety of populations and applications, to 

investigate both the healthy brain and the diseased brain. However, what makes wearable 

fNIRS even more appealing is its capability to allow more ecologically-valid 

measurements in everyday life scenarios that are not possible with other gold-standard 

neuroimaging modalities, such as functional Magnetic Resonance Imaging. This can have 
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a huge impact on the way we explore the neural bases and mechanisms underpinning 

human brain functioning.  

 The aim of this review is to provide an overview of studies conducted with 

wearable fNIRS in naturalistic settings in the field of cognitive neuroscience. In addition, 

we present the challenges associated with the use of wearable fNIRS in unrestrained 

contexts, discussing solutions that will allow accurate inference of functional brain 

activity. Finally, we provide an overview of the future perspectives in cognitive 

neuroscience that we believe would benefit the most by using wearable fNIRS. 
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1. Introduction 

 Understanding and identifying the relationships between human behaviour and 

cognitive processes represented the main goal of cognitive neuroscientists over the past 

century. Historically, neuropsychological assessments were conducted investigating the 

effect of task manipulations on participants’ performance and behavioural variables (e.g., 

response times, accuracy, etc.), with cognitive models built on the basis of the outcome 

of the cognitive tests. Neuropsychological tests were - and still are - often used as a 

support for diagnostic purposes, e.g. for the early detection of cognitive disabilities such 

as Alzheimer’s (Spooner & Pachana, 2006). However, there is not always a univocal 

correspondence between a certain stimulus and behaviour, and behavioural variables 

might not be enough in characterizing some cognitive functions (Poldrack, 2006). 

Nowadays, the field of cognitive neuroscience concerns itself with mapping information 
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processing models of the mind onto the structural and operational (e.g., electrical, 

metabolic, hemodynamic) features of the brain. This has been enabled by neuroimaging 

technologies currently available to neuroscientists, such as neurovascular-based 

techniques (i.e., functional magnetic resonance imaging (fMRI), functional near-infrared 

spectroscopy (fNIRS), positron-emission-tomography (PET)), and electromagnetic 

techniques (i.e., electroencephalography (EEG) and magnetoencephalography (MEG)). 

In classical neuroimaging investigations, participants are required to undertake a timely 

rigid constructed experimental procedure involving one or many different types of stimuli 

that intend to elicit a behaviour that can be associated with particular brain regions. Often, 

the experimental paradigm used to elicit the mental processing (e.g., showing a long series 

of single words one at a time) does not require the participant to be engaged in a mental 

task that is very similar to one that would typically be encountered in everyday life. 

Indeed, as neuroimaging is done within the tight constraints of the neuroimaging 

laboratory and instrument, everyday life behaviour cannot be exactly replicated. For 

example, interactions with other people (including physical ones), and complex 

integrative tasks such as serial multitasking where a person is swapping between very 

different tasks such as cooking or shopping (Burgess, 2015). These situations are hard to 

mimic in e.g. an fMRI scanner. In fact, fMRI as well as PET and MEG impose significant 

physical constraints, given the fact that measurements are taken with participants 

restrained in a scanner. Moreover, all these techniques are highly susceptible to motion 

artifacts and/or cannot be brought outside the lab, thus not being suitable for use on freely-

moving subjects and in everyday life. These issues limit the questions that can be asked, 

and raise the question of the ecological validity of the results. For these reasons, a 

neuroimaging method which can be used while people perform almost any activity that 
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they would in everyday life, especially over lengthy durations, opens up the possibility 

of asking very different scientific questions, especially exploratory ones. Moreover, the 

method can, if used appropriately, decrease the possibility of an error of scientific 

inference in mapping mind to brain.  

A solution for monitoring the neural correlates of daily life activities can be 

achieved by wearable fNIRS devices.  fNIRS is one of the most recent neuroimaging 

technique and, over the past few decades, it has rapidly grown to become an invaluable 

and powerful tool for neuroscientists and clinicians to monitor changes in brain tissue 

oxygenation and hemodynamic (Boas, Elwell, Ferrari & Taga, 2014). fNIRS utilises near-

infrared (NIR) light (650-1000 nm) to measure the concentration changes of oxygenated 

(HbO2) and deoxygenated (HbR) haemoglobin, taking advantage of the different 

absorption spectra of the two chromophores in the NIR wavelength range. When a brain 

region becomes metabolically active, there is an oversupply of cerebral blood flow (CBF) 

to meet the increase in oxygen demand; this is reflected by an increase in HbO2 and a 

decrease in HbR (i.e., the hemodynamic response) and is an indicator of functional brain 

activity (Scholkmann et al., 2014). fNIRS measurements are performed by placing a 

certain number of NIR light sources, shining light into the brain, and optical detectors, 

collecting the back-scattered light, onto the participants’ head. The transmitted and the 

back-scattered light are usually guided through fibre optics connected to the main 

recording unit of the fNIRS system. Most of the conventional fNIRS instruments are quite 

heavy and big in size, and need carts to be transported (Scholkmann et al., 2014). Thanks 

to the recent technological advancements, more portable and miniaturized fNIRS devices 

were developed. This new generation of wearable devices allow participants to freely and 

naturally move in the environment without tight physical restraints. These systems are 
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battery-powered, wearable and data can be either stored on the wearable recording unit 

or transmitted wirelessly to a laptop. 

The availability of this novel technology, paves the way to new neuroscientific 

investigations that can now be performed in more naturalistic and ecologically-valid 

settings, with people free to walk and interact with the environment as they would do in 

real-life. The aim of this review is to give an overview of the studies performed so far 

with wearable fNIRS devices in the field of cognitive neuroscience in more naturalistic 

situations. In this framework, we also aim at discussing (i) the challenges associated with 

the use of fNIRS on freely moving subjects, focusing on the analysis approaches and 

limitations, (ii) provide recommendations for successful use of the technology in 

naturalistic situations, and (iii) discuss the possible future directions. 

 

2. Overview of wearable fNIRS systems 

The last decade has seen a trend towards the development of miniaturized and 

wearable fNIRS devices. Such systems are based on the continuous-wave (CW) NIRS 

technology (Scholkmann et al., 2014), and overcome the issues and restrictions related to 

bulky fibre optic bundles, usually by having LEDs directly coupled to the head and 

flexible headbands holding sources and detectors. In addition, these instruments are 

battery operated, being more portable and allowing measurements in everyday life 

scenarios with minimal restraints; data are usually stored in the device itself or sent to a 

PC through wireless communication. 

Concerning the number of channels, this depends on the number of sources and 

detectors the device is equipped with. A channel is composed by one source and one 

detector, and represents the measurement point, i.e., the investigated brain tissue volume 
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located at half of the source-detector distance and at a depth of around half the source-

detector distance (Patil, Safaie, Moghaddam, Wallois, & Grebe, 2011).  The first wearable 

system implementing wireless telemetry was limited by the number of optodes (i.e., light 

source or detector), having one detector and one light source, resulting in one 

measurement channel, and permitting the monitoring of very limited brain regions (Hoshi 

& Chen, 2002; Shiga, Yamamoto, Tanabe, Nakase, & Chance, 1997). Significant 

progress was made subsequently, and more sophisticated devices were developed and 

validated, with a higher number of channels (e.g., 16 (Ayaz et al., 2013), 20 (Piper et al., 

2014), 22 (Atsumori et al., 2009), 32 (Muehlemann, Haensse, & Wolf, 2008)) to meet the 

need for higher head coverage for different functional investigations. For example, one 

of the first portable optical brain imagers (Chance, Luo, Nioka, Alsop, & Detre, 1997) 

was improved and extended from one to 16 channels (4 LEDs light sources and 10 

detectors; sampling frequency=2 Hz) at Drexel University (Ayaz et al., 2013), allowing 

now the monitoring of both dorsal and inferior frontal cortical areas. Additionally, the 

palm-sized wireless system described by Muehlemann et al. (2008) can measure up to 32 

channels at a sampling frequency of 100 Hz. Channels configuration and number can be 

easily adapted on individual’s needs using systems with modular optodes (Funane et al., 

2017; Chitnis et al., 2016a). More recently, multi-distance, eight- and four-wavelength 

systems were implemented (Chitnis et al., 2016b; Wyser, Lambercy, Scholkmann, Wolf, 

& Gassert, 2017), permitting the monitoring of changes in both brain hemodynamics 

(HbO2, HbR) and metabolism (oxidized cytochrome-c-oxidase (oxCCO)), at 

different depths, and with a scalable number of channels, thanks to the modular optodes 

design (Wyser et al., 2017). In addition, the availability of short-separation channels in 

the system presented by Wyser et al. (2017) improves the signals’ quality by 



 

 

 

7 

automatically removing the influence of systemic physiological changes originating at 

the more superficial layers of the head (Tachtisdis & Sholkmann, 2016). Wearable 

solutions integrating simultaneous EEG and fNIRS measurements were proposed as well 

(Lareau et al., 2011; Safaie, Grebe, Moghaddam, & Wallois, 2013), taking advantage of 

the suitability of fNIRS for multimodal imaging. However, to date, in order to minimize 

the power consumption and have a miniaturized and light wearable device that functions 

for long time periods, the number of channels is still limited when compared to 

conventional fNIRS instruments that can reach whole head coverage. 

From 2009, several companies began to commercialize wearable and wireless 

fNIRS devices. The systems available so far in the market were reviewed by Quaresima 

and Ferrari (2016) (NOTE: in addition to the list provided by the authors, a newer system, 

the Brite23, has been recently introduced by Artinis, The Netherlands, with 23 channels, 

a maximum sampling rate of 100 Hz, wireless data transmission and possible 

hyperscanning configuration). In Table 1, we expanded the information provided by 

Quaresima and Ferrari (2016) with additional details on the available systems.  

 

 

Table 1. Overview of the features of the commercially available wireless and wearable 

fNIRS systems (adapted from Quaresima and Ferrari (2016)). 

Device 
Company, 

Country 

Probed 

brain 

region 

Fibreless Wavelengths SD separation 

Brite23 
Artinis, The 

Netherlands 

Whole 

PFC 
 760, 850 nm 35 mm 

OctaMon 
Artinis, The 

Netherlands 
PFC  760, 850 nm 

35 mm (26 

mm for 

babies) 

PortaLite 
Artinis, The 

Netherlands 
Custom  760, 850 nm 30, 35, 40 mm 
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Hb-13N Astem, Japan PFC X 770, 830 nm 

2, 4, 20, 30 

mm 

(spatially 

resolved) 

Pocket NIRS 

HM 

Dynasense 

Inc., Japan 
PFC X 

735, 810, 850 

nm 
30 mm 

fNIRS Imager 

1200M 

fNIRS Devices 

LLC., USA 
PFC X 730, 850 nm 2.5 mm 

WOT-100 Hitachi, Japan PFC X 705, 830 nm 30 mm 

WOT-220 Hitachi, Japan PFC X 705, 830 nm 30 mm 

WOT-HS Hitachi, Japan PFC X 705, 830 nm 21.2, 30 mm 

HOT-1000 Hitachi, Japan PFC X 810 nm 10, 30 mm 

Genie 
MRRA Inc., 

USA 
INF INF 700, 850 nm DOT 

NIRSport 

NIRx Medical 

Technologies, 

LLC, USA 

Custom  760, 850 nm Custom 

NIRSIT Obelab, Korea PFC X 780, 850 nm 
15, 21.2, 30, 

33.5 

LIGHTNIRS 
Shimadzu, 

Japan 
Custom  

780, 805, 830 

nm 
30 mm 

SPEEDNIRS 
Shimadzu, 

Japan 
Custom  

780, 805, 830 

nm 
30 mm 

OEG-16 
Spectratech 

Inc., Japan 
PFC X 770, 840 nm 30 mm 

OEG-16 ME 
Spectratech 

Inc., Japan 
PFC X 770, 840 nm 30 mm 

OEG-17APD 
Spectratech 

Inc., Japan 
Custom  770, 840 nm 30 mm 

OEG-SpO2 
Spectratech 

Inc., Japan 
PFC X 770, 840 nm 30 mm 

Techen 

Wireless 

TechEn Inc., 

USA 
INF INF INF INF 

Abbreviations: SD= source-detector; PFC = Prefrontal cortex; DOT = Diffuse optical 

tomography; INF= Information not found. 

 

 Twenty devices are currently commercially available, with different number of 

channels (from 1 to 496) and sampling frequencies (1-100 Hz). The majority of them 

implement wireless data transmission and allow the synchronization of multiple devices 
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(up to 7) for hyperscanning measurements (i.e., simultaneous recording of brain activity 

of two or more individuals (Babiloni & Astolfi, 2014)). High-density (i.e., more dense set 

of source-detector pairs (Eggebrecht et al., 2012)) optical tomography systems for the 

prefrontal cortex are available as well, with 204 and 496 channels (Quaresima & Ferrari, 

2016), that allows the performance of DOT measurements, with several measurements at 

different depths that improves the lateral and depth resolution (Eggbrecht et al., 2012, 

Zhao & Cooper, 2017). Most of the instruments are designed for measuring only the 

prefrontal cortex (Table 1), mainly to maximize the functioning duration of the system, 

and the optical components are usually connected to a small processing and 

recording/transmitting unit holding the battery, usually carried through a backpack 

(Figure 1).   

 

Figure 1. Examples of wireless and wearable fNIRS devices in unrestrained situations. 

Panel A shows a fibreless system (WOT-100, Hitachi, Japan) monitoring the prefrontal 

cortex outside the lab. A black cap is used to prevent detectors saturation. In panel B, a 

wearable device equipped with fibres (LIGHTNIRS, Shimadzu, Japan) measuring over 
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the motor cortices is presented, where wires are connected to the control unit carried 

through a backpack (Photo courtesy of Shimadzu, Japan). 

 

 Most instruments have fixed source-detector separations, typically 3 cm for adult 

studies. Two DOT systems are available and allow measurement of brain activity at 

different depths, while two systems permit the adjustment of source-detector separations 

with custom configurations. The majority of the instruments use two wavelengths to 

resolve oxy- and deoxy- haemoglobin concentrations, except the Pocket NIRS HM from 

Dynasense and the SPEEDNIRS and LIGHTNIRS from Shimadzu that use three-

wavelengths to account for the scattering, and the WOT-1000 from Hitachi, which uses 

only one wavelength to resolve total-haemoglobin. Eleven of the available systems are 

completely fibreless and optical components are directly coupled to the head (Table 1; 

see Figure 1 A for an example); the others use shorter and lighter wires than conventional 

fNIRS systems to guide the light that are connected to the control unit (see Figure 1 B for 

an example), still allowing for free movement. To prevent detector saturations in case of 

outdoor use, shading caps are available (Figure 1 A); alternatively, some devices 

implement a reference detector measuring the ambient light that is used to correct for 

stray light. 

 

3. Literature Review 

 A literature review of research articles using wearable fNIRS devices in more 

ecologically-valid cognitive experiments was carried out in order to identify the most 

common applications of wireless fNIRS in the field of cognitive neuroscience so far, and 

to set the starting point for our discussions and future directions. More precisely, we 

focused on the studies employing the new class of wearable and/or wireless devices in 
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unrestrained contexts with freely-moving participants while undertaking a cognitive task. 

The search procedure was performed using the PubMed database, manual search from 

articles references and the publication surveys available on the Society for functional 

Near Infrared Spectroscopy website (http://fnirs.org/publications/nirs-niri-publications/). 

For database searching, we used the keywords functional near-infrared spectroscopy, 

fNIRS, wireless, portable, wearable, and brain. Articles were selected on the basis of the 

following inclusion criteria: 

1. Original research papers published on peer-reviewed journals until September 

2017. Review papers and conference proceedings were excluded. 

2. Papers involving task-evoked functional activity experiments with a cognitive 

task performed on freely moving participants and not in a typical laboratory setup 

(usually, seated and interacting with a computer only). 

3. Articles employing wearable fNIRS devices to measure brain activity in response 

to cognitive tasks. Papers using conventional fNIRS instrumentation were 

excluded. 

In case of multiple cognitive tasks examined within the same paper, only the ones 

involving the use of wearable fNIRS devices, and with freely-moving subjects were 

considered. Ten original research papers were included in the present review. Following 

the procedure adopted by Herold et al. (2017), from articles’ full-texts we collected 

information concerning the application of wireless fNIRS (e.g., population, and 

experimental protocol), the pre-processing, and the statistical analysis of fNIRS data. In 

the following sections, we present the approaches adopted in the reviewed studies with 

additional details, providing an overview of the application of wearable fNIRS (Table 2), 

http://fnirs.org/publications/nirs-niri-publications/)
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and data acquisition (Table 3), data pre-processing (Table 4) and statistical inference 

(Table 5). 

 

3.1. Population and experimental protocol 

The majority of the studies (Table 2) included in the present review were performed 

on a cohort of healthy young adults (Atzumori et al., 2010; Balardin et al., 2017; 

McKendrick et al., 2016; McKendrick, Mehta, Ayaz, Scheldrup, & Parasuraman, 2017; 

Mirelaman et al., 2014; Pinti et al., 2015; Takeuchi et al., 2016) and two on healthy older 

adults (Maidan et al., 2016; Takeuchi et al., 2016). Two papers examined individuals with 

neurological deficits such as Parkinson’s Disease (Maidan et al., 2016; Nieuwhof et al., 

2016), and one included individuals with mild cognitive impairments (Doi et al., 2013).
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Table 2. Summary of the populations investigated in the reviewed articles and overview of the experimental protocols. 

First author 

Population 

(n= number of participants; age in 

years ± SD) 

 Experimental protocol 

Behavioural task Conditions 
Study design 

Number of blocks; block duration 

Atsumori et al. 2010 
- Healthy young adults  

(n=6; 29.7 ± 3.3) 

- NW 

- DTW + attention 

demanding task 

- Rest 

- Control (NW) 

- Task 

- 1 block; 20 s. 

- 6 blocks; 10 s. 

- 5 blocks; 10 s. 

Balardin et al. 2017 

- Healthy young adults  

(n=1; 30) 

- Playing table 

tennis 

- Rest 

- Forehand 

- Predictable 

- Unpredictable 

- 10 blocks; 30 s. 

- 10 blocks; 20 s. 

- 10 blocks; 20 s. 

- 10 blocks; 20 s. 

- Healthy young adults  

(n=1; 26) 

- Continuous 

monitoring in 

everyday life 

- Everyday life 

activities 
- Continuous; 4 h. 

Doi et al. 2013 
- MCI old adults  

(n=16; 75.4 ± 7.2) 

- NW 

- DTW + verbal 

letter fluency task 

- Pre-task rest 

- Task 

- Rest 

- 3 blocks; 10 s. 

- 3 blocks; 20 s. 

- 3 blocks; 30 s. 

Maidan et al. 2016 

- Old adults with Parkinson's 

Disease (n=68; 71.6 ± 0.9);  

- Healthy old adults  

(n=28; 70.4 ± 0.9) 

- NW 

- DTW + serial 

subtraction 

- DTW + 

negotiating 

obstacles 

- Rest 

- Task 

- 5 blocks; 20 s. 

- 5 blocks; 30 s. 
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McKendrick et al. 2016 
- Healthy young adults  

(n=20; 18-29) 

- DTW + auditory 1-

back task 

- DTW + scenery 

probe 

- Rest 

- Task 

 

- 47 blocks; minimum 15 s. 

- 37 blocks; 60 s. 

- 10 blocks; 30 s. 

McKendrick et al. 2017 
- Healthy young adults  

(n=13; mean=22; range 19-31) 

- Sitting + auditory 

1-back task 

- DTW indoor + 

auditory 1-back 

task 

- DTW outdoor + 

auditory 1-back 

task 

- Task 

- 4 blocks; 120 s. 

- 2 blocks: 120 s. 

- 2 blocks, 120 s. 

Mirelaman et al. 2014 
- Healthy young adults  

(n=23; 30.9 ± 3.7) 

- NW 

- DTW + counting 

forward 

- DTW + serial 

subtraction 

- Standing + serial 

subtraction 

- Rest 

- Task 

- 6 blocks; 20 s. 

- 5 blocks; 30 s/30 m. 

Nieuwhof et al. 2016 
- Old adults with Parkinson's 

Disease (n=12; 70.1 ± 5.4) 

- DTW + counting 

forward 

- DTW + serial 

subtraction 

- DTW + reciting 

digit span 

- Rest 

- Task 

- 6 blocks; 20 s. 

- 5 blocks; 40 s. 

Pinti et al. 2015 
- Healthy young adults 

(n=1; 24) 

- DTW + ongoing 

task 

- DTW + PM 

- Rest 

- Ongoing task 

- 2 blocks; 60 s. 

- 2 blocks; 5 min. 

- 1 block; 5 min. 
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- Non-social 

PM task 

- Social PM 

task 

- 1 block; 5 min. 

Takeuchi et al. 2016 

- Healthy young adults 

(n=16; 25.9 ± 4.4) 

- Healthy old adults  

(n=15; 71.7 ± 3.3) 

- DTW + playing 

Touch the numbers 

- Rest 

- Task 

- 6 blocks; 30 s. 

- 15 blocks; 10 s. 

Abbreviations: NW = Normal walking; DTW = Dual-task walking; MCI = Mild cognitive impairment; PM = Prospective memory. 
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All the studies examined in this review (Table 2) involved a motor-cognitive dual-

task walking (DTW) protocol, in which participants were asked to perform a secondary 

cognitive task while walking. For instance, in the study of Atsumori et al. (2010), the 

secondary task was an attention demanding task (ball-carrying) that was carried out while 

walking. Other cognitive tasks employed in addition to walking involved serial 

subtractions (Maidan et al, 2016; Mirelaman et al., 2014; Nieuwhof et al., 2016), counting 

forward (Mirelaman et al., 2014; Nieuwhof et al., 2016), reciting a series of digits (digit 

span (Nieuwhof et al., 2016), a verbal letter fluency task (Doi et al., 2013) and playing a 

game on a smartphone (Takeuchi et al., 2016). A table tennis task was used by Balardin 

et al. (2017) to investigate the feasibility of wearable and wireless fNIRS in case of 

moderate levels of motion. Whilst the above-mentioned studies were performed in indoor 

environments, more interestingly four studies (Balardin et al., 2017; McKendrick et al., 

2016; McKendrick et al., 2017; Pinti et al., 2015) were carried out outside in everyday 

life contexts. Balardin et al. (2017) monitored changes in prefrontal cortex activity during 

the execution of everyday life actions. The study by McKendrick et al. (2016) aimed at 

investigating situation awareness and mental workload on people during navigation of a 

college campus using a hand-held display, or an augmented reality wearable display while 

simultaneously performing a visual perception or an auditory 1-back task. More recently, 

the auditory 1-back was repeated on participants while sitting, walking indoor and 

walking outdoor around a busy college campus (McKendrick et al., 2017). Pinti et al. 

(2015) investigated the neural correlates of a prospective memory (PM) task conducted 

in the streets of London on freely-moving subjects with no particular restrictions and no 

preparation of the environment (Pinti et al., 2015).  
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 Typical block design experiments (i.e., conditions are repeated over time and 

spaced out by rest periods) are usually employed except for the papers by Pinti et al. 

(2015) and Balardin et al. (2017), where continuous monitoring with minimum task 

repetitions were adopted. For instance, in Pinti et al. (2015) conditions were repeated 

twice while in most neuroscience experimental investigations blocks and events are 

repeated multiple times (e.g., 10 or more). This was done to mimic real-life situations as 

much as possible and to have more ecologically-valid cognitive tasks. Rest periods are 

usually represented by normal walking (NW, i.e., walking with no secondary task) 

conditions (Atsumori et al., 2010; McKendrick et al., 2016; Pinti et al., 2015; Takeuchi 

et al., 2016), standing while performing a secondary task (Pinti et al., 2015) or standing 

still (Balardin et al., 2017; Doi et al., 2013; Maidan et al., 2016; McKendrick et al., 2017; 

Mirelaman et al., 2014; Nieuwhof et al., 2016). 
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3.2. Data acquisition 

Cortical hemodynamic responses (Table 3) were usually investigated over the pre-

frontal cortex (PFC) since this region is easily accessible, and most of the commercially 

available system allows the monitoring of only frontal regions (Atsumori et al., 2010; Doi 

et al., 2013; Maidan et al., 2016; McKendrick et al., 2016; McKendrick et al., 2017; 

Mirelaman et al., 2014; Nieuwhof et al., 2016; Pinti et al., 2015; Takeuchi et al., 2016). 

In one study, supplementary motor and primary motor cortex were probed instead during 

a table tennis task (Balardin et al., 2017). 
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Table 3. Summary of the fNIRS devices and data acquisition features. 

First author 

fNIRS data acquisition 

Wavelengths 
Number of 

channels 

Source-detector 

separation 
Cortical brain region 

Sampling 

frequency 

Atsumori et al. 2010 - 754 and 830 nm - 22 - 30 mm - PFC - 5 Hz 

Balardin et al. 2017 - 760 and 850 nm 

- 23 

- 30 mm 

- PFC 

- 7.81 Hz 

 - 22 

- supplementary 

motor  

and primary motor 

cortex 

Doi et al. 2013 - 770 and 840 nm - 16 - 30 mm - PFC - 1.54 Hz 

Maidan et al. 2016 - 760 and 850 nm - 6 - 30, 35, 40 mm - PFC - 10 Hz 

McKendrick et al. 2016 - 730 and 850 nm - 4 - Not reported - PFC - 4 Hz 

McKendrick et al. 2017 - 730 and 850 nm - 4 - Not reported - PFC - 4 Hz 

Mirelaman et al. 2014 - 760 and 850 nm - 6 - Not reported - PFC - 10 Hz 

Nieuwhof et al. 2016 - 760 and 850 nm - 6 - 30, 35, 40 mm - PFC - 10 Hz 
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Pinti et al. 2015 - 705 and 830 nm - 16 - 30 mm - PFC - 5 Hz 

Takeuchi et al. 2016 - 705 and 830 nm - 16 - 30 mm - PFC - 5 Hz 

Abbreviations: PFC = Prefrontal cortex
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3.3. Data pre-processing 

 The pre-processing of fNIRS data is a crucial step as the results of statistical 

analyses strongly rely on the quality of the data. It is thus extremely important to reduce 

the impact of physiological noises, motion artifacts and slow drifts present in the fNIRS 

signals. Table 4 summarizes the details of the pre-processing steps adopted in the 

reviewed studies to de-noise fNIRS data. 

 



 

 

 

22 

Table 4. Summary of the steps adopted for the fNIRS data pre-processing. 

 

First author 

fNIRS data pre-processing 

DPF 
Motion artifact 

correction 
Filtering Additional steps 

Atsumori et al. 2010 - N/A - Not performed - Not performed - Baseline correction 

Balardin et al. 2017 - Not reported - Not performed - BP filter [0.01 0.2] Hz - Down-sampling to 1 Hz 

Doi et al. 2013 - Not reported - Not performed - LP filter 0.05 Hz - Baseline correction 

Maidan et al. 2016 - Not reported - Wavelet-based - BP filter [0.01 0.14] Hz - CBSI; Baseline correction 

McKendrick et al. 2016 - Not reported - Not performed - LP FIR filter, 20th order, 0.1 Hz - Baseline correction 

McKendrick et al. 2017 - Not reported - Not performed - LP FIR filter, 20th order, 0.1 Hz - Baseline correction 

Mirelaman et al. 2014 - Not reported - Not performed - LP FIR filter, 0.14 Hz - Baseline correction 

Nieuwhof et al. 2016 - Constant (6.0) - MARA - LP Butterworth filter, 0.1 Hz - Baseline correction 

Pinti et al. 2015 - N/A - Wavelet-based 
- BP Butterworth filter, 3rd order, 

[0.008 0.2] Hz 

- Down-sampling to 1 Hz; 

CBSI 
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Takeuchi et al. 2016 - N/A - Not performed 
- Moving average 

- BP filter [0.01 0.5] Hz 
- Baseline correction 

Abbreviations: DPF = differential path length factor; BP = Band-pass; LP = low-pass; CBSI = correlation-based signal improvement; FIR 

= finite impulse response; MARA = movement artifact reduction algorithm.
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3.4. Data analysis 

 The presence of functional activation in the investigated brain regions was 

statistically assessed (Tak & Ye, 2014) in most of the studies using the averaging method, 

i.e. averaging signal segments across task and rest periods, and inferring functional brain 

activity on the basis of the difference between task and rest mean values (Atsumori et al., 

2010; Doi et al., 2013; Maidan et al., 2016; McKendrick et al., 2016; McKendrick et al., 

2017; Mirelaman et al., 2014; Nieuwhof et al., 2016; Takeuchi et al., 2016).  
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Table 5. Overview of the analysis of fNIRS data. 

First author 
fNIRS analysis 

Method Activation parameter Time used for the analysis 

Atsumori et al. 2010 - Averaging + t-test - HbO2 and HbR - 6 – 32 s after the start of the task 

Balardin et al. 2017 
- GLM + t-test 

- CWT 
- HbO2 

- Entire task block 

- 1 min 

Doi et al. 2013 - Averaging + t-test - HbO2 - Entire task block 

Maidan et al. 2016 - Averaging + Linear mixed model - HbO2 - Entire task block 

McKendrick et al. 2016 
- Averaging + Generalized and 

linear mixed model 
- HbO2 and HbR - Entire task block 

McKendrick et al. 2017 
- Averaging + Generalized and 

linear mixed model 
- HbO2 and HbR - Entire task block 

Mirelaman et al. 2014 
- Averaging + RM ANOVA 

- CWT 
- HbO2 - Entire task block 

Nieuwhof et al. 2016 
- Averaging + Wilcoxon signed-

rank test 
- HbO2 and HbR - Entire task block 

Pinti et al. 2015 - N/A - HbO2 and HbR - Entire task period 

Takeuchi et al. 2016 - Averaging + ANOVA - HbO2 - Entire task block 

Abbreviations: GLM = General linear model; CWT = Continuous wavelet transform; RM ANOVA = Repeated measures analysis of 

variance analysis.
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One paper adopted the General Linear Model (GLM) approach instead, i.e. fitting the 

fNIRS data with task-related regressors modelling the theoretical hemodynamic response 

to the assigned cognitive task (Balardin et al., 2017). Continuous Wavelet Transform 

(CWT) was used in 2 articles to investigate the functional connectivity between brain 

regions (Balardin et al., 2017; Mirelaman et al., 2014). 

 

4. Challenges and way forward 

 When recording fNIRS data in unrestrained contexts and on mobile people, there 

are some methodological issues that need to be considered and addressed. In this section, 

we discuss and summarize the technology limitations (Table 6), providing some 

suggestions to overcome these issues, and to get meaningful fNIRS data and results.  

 

Table 6. Summary of the challenges associated with using fNIRS in naturalistic settings 

and recommended solutions. 

Challenge Solution 

Body 

movements 

Motion 

artifacts 

Correct through: 

- Wavelet-based filtering 

- tPCA 

Optical 

decoupling 
- Properly secure the fNIRS probes to the head 

Sunlight/Detector saturation 
- Protecting caps 

- Device with ambient light detector 

Signals’ quality deterioration/ 

Channels inclusion criteria 

- Visual inspection of signals 

- Exclude channels without heart rate oscillations 

- Exclude channels with CV>15%  

- Exclude non-measuring channels (e.g. flat lines) 



 

 

 

 

27 

Systemic changes 

- Include longer rest periods (e.g., 2 min) 

- Band-pass filtering (NOTE: this removes some of the 

physiological noises, e.g. heart rate and respiration, but it 

is not effective in removing task-evoked systemic changes) 

- Measure additional physiological signals 

- Monitor participants’ movements (accelerometer or GPS) 

- Report results of HbO2 and HbR 

Statistical inference/ 

Unstructured protocols 
- Apply AIDE 

Abbreviations: tPCA = targeted principal component analysis; SNR = Signal-to-noise 

ration; CV = coefficient of variation. 

 

 

 

4.1. Body movements 

 In order to arrive at a correct neuroscientific conclusion, it is necessary to record 

good quality fNIRS data. However, the signals’ quality can be deteriorated by several 

factors. If we consider recording neuroimaging data on freely moving people, the first 

concern relates to the execution of body and head movements. In fact, although fNIRS is 

more tolerant to movements, and wearable devices are miniaturized and even more robust 

than conventional fNIRS instruments, motion artifacts are more likely to occur when 

participants are walking rather than sitting on a chair, as they are allowed to move freely 

and perform a wider range of movements. For example, motion errors can corrupt fNIRS 

signals with shifts from baseline values (Figure 2 A, green shaded areas) or fast and 

narrow spikes (Brigadoi et al., 2014), characterized by a positive correlation between 

HbO2 and HbR (Figure 2 A, yellow shaded areas).  
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Figure 2. Example of motion artifacts in raw fNIRS signals (A) as shifts from baseline 

values (green shaded areas) and fast spikes (yellow shaded areas), where HbO2 and HbR 

are correlated. Panel B shows the effect of the application of the tPCA approach for the 

correction of motion errors. HbO2 and HbR become anti-correlated after being properly 

corrected. Data refer to the study by Pinti et al., 2015. 

 

 

 To date, several methods are available to identify and correct for motion artifacts 

(Scholkmann, Spichtig, Muehlemann, & Wolf, 2010), and were reviewed by Brigadoi et 

al. (2014). Among these, the wavelet-based (Molavi & Dumonts, 2012) and the targeted 

principal component analysis (tPCA) approaches (Yücel et al., 2014) appeared to be the 

most effective. In Figure 2 B, we show the effectiveness of tPCA to correct both baseline 

shifts (green shaded areas) and higher-frequency spikes (yellow shaded areas). In the 

latter, the physiological anti-correlation between HbO2 and HbR typical of functional 

activity (Obrig et al., 2000) is effectively restored. Only 3 of the reviewed papers included 

the correction of motion errors. Since correcting for such artifacts was demonstrated to 

be better than rejecting corrupted trials (Brigadoi et al., 2014), we suggest employing one 

of the available correction techniques, and especially the wavelet-based filtering or tPCA 
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(Table 6), as part of the pre-processing flow. Head movements can also lead to a loss of 

coupling between the optodes and the head that further deteriorates signals’ quality. In 

case of poor optical coupling, no physiological signals are sampled and time-series are 

only constituted of white-noise (Figure 3 A), characterized by a constant power spectral 

density (PSD). The fNIRS probes thus have to be securely attached to the head, with good 

contact with the skin. 
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Figure 3. Example HbO2 and HbR in absence of a good coupling between the optodes 

and the head (A). This is reflected by the presence of only white noise, with a constant 

PSD. Data were in-house collected on the visual cortex using the Hitachi ETG-4000 

during the presentation of a flashing checkerboard. In panel B, examples of channels 

corrupted by sunlight are shown, with consequent detector saturation. Data refer to the 

study by Pinti et al., 2015. The quality of fNIRS data can be assessed evaluating the 

presence of heart beat oscillations (C), visible both in the time- and in the frequency-

domain. Data correspond to resting-state signals in-house recorded over the PFC using 

the Hitachi WOT-system. 
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 In addition, when using fNIRS in outdoor environments, optical detectors should 

be protected from the stray sunlight. In this case, the detectors will be overexposed and 

measured intensity signals will appear as flat lines or be full of spikes with non-

physiological amplitudes (Figure 3 B). Detector overexposure and saturation can be 

prevented using light-shielding caps/hats (Figure 1 A; McKendrick et al., 2016, 2017; 

Pinti et al., 2015) or detectors with very high dynamic range or using fNIRS devices that 

incorporate a reference detector measuring only the ambient light that is then subtracted 

from the other channels’ signals(e.g., Brite23 and Octamon from Artinis, Table 1). In 

order to identify noisy channels due to poor coupling or not-measuring channels due to 

detectors saturation, we highly recommended to (i) visually inspect the recorded signals 

and (ii) assess channels’ quality using more objective measures e.g. following the 

approach proposed by Piper et al. (2014) based on the coefficient of variation (CV) of the 

signals, excluding those channels with CV values higher than 15%. Signals’ quality can 

be evaluated checking for the presence of the heart beat oscillation (0.6 - 1 s) in the time-

series, especially in HbO2, or a frequency peak in the range 1 - 1.5 Hz in the PSD of 

the signal (Figure 2 C). This ensures that physiologically meaningful components are 

measured.   

 

4.2. Systemic interferences 

 To improve the accuracy of functional investigations through fNIRS, the influence 

of physiological confounding factors need to be taken into consideration as well. In fact, 

fNIRS signals are contaminated by components of systemic origin that are not related to 

neuronal activity and that can lead to false positives and/or false negatives when inferring 

functional activity (Tachtsidis & Scholkmann, 2016). These physiological changes can 
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arise both at the intra- and extra-cerebral compartments of the head, and can be both 

spontaneous and evoked by the cognitive task (Scholkmann et al., 2014). A large amount 

of variability in fNIRS signals can thus be represented by changes in breathing rate, heart 

rate, carbon dioxide (CO2) in the blood, blood pressure, vasomotor and autonomic 

regulations (Holper, Scholkmann, & Wolf, 2014; Kirilina et al., 2012; Rowley et al., 

2006; Scholkmann, Gerber, Wolf, & Wolf, 2013; Tachtsidis et al., 2004; Tong, Hocke, 

& Licata, 2012). We expect the effect of systemic interferences to be even more 

pronounced in case of physical activity. For example, rapid posture changes (e.g., from 

laying down to standing up) can induce venous pooling or orthostatic hypotension 

(Balardin et al., 2017). In addition, walking can lead to changes in e.g. heart and breathing 

rates. In Figure 4, we show examples of heart rate (A) and breathing rate (B) signals 

recorded during the experiment performed by Pinti et al. (2014).  
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Figure 4. Heart rate (A), breathing rate (B), and acceleration (C) data referring to one 

participant undertaking the experiment described in Pinti et al. (2014). Yellow shaded 

areas indicate the conditions involving walking (W), while blue shaded areas represent 

the phases in which the participant was standing (S). 
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Walk-related changes can be observed in both signals when passing from experimental 

conditions involving walking (W; yellow shaded areas, lasting 6 min) to standing 

conditions (S; blue shaded areas, lasting 3 min), with increases and decreases in both 

heart rate and breathing rate levels. 

 Measuring acceleration (Figure 4 C) or GPS data can help in the interpretation of 

physiological and hemodynamic changes, providing information on participants’ 

movements (e.g., walk vs. stand, speed). Walking for long periods can cause  fatigue with 

consequent systemic changes that alter the brain hemodynamic responses. As shown in 

Figure 5, changes in breathing rate exhibits trends very similar to concentration signals, 

and in particular HbO2 (Kirilina et al., 2012; Tachtsidis & Scholkmann, 2016), both 

when the participant is walking (W; yellow shaded areas) and standing (S; blue shaded 

areas). To reduce fatigue, longer rest periods lasting a few minutes are recommended 

(Herold et al., 2017), to allow physiological and hemodynamic variables to reach their 

baseline values.  
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Figure 5. Breathing rate and unpre-processed concentration changes in oxy- and deoxy- 

haemoglobin referring to one participant undertaking the experiment described in Pinti et 

al. (2014). Yellow shaded areas indicate the conditions involving walking (W), while blue 

shaded areas represent the phases in which the participant was standing (S). 

 

Different methods were proposed so far to reduce the impact of these components 

(Scholkmann et al., 2014). One of the most straightforward is to filter the fNIRS signals 

in specific frequency bands, preserving the functional activity range and excluding the 

noise frequencies. In the reviewed studies, low-pass filters are more often used. However, 

fNIRS signals can also include slow trends related to instrumental noise and/or very low 

frequency vasomotion regulations (<0.1 Hz). We thus recommend to use low-pass filters 

together with high-pass filters (i.e., band-pass filters) to remove both slow trends and 

higher frequency physiological noises (e.g., heart rate (1 Hz)). Attention should be paid 

in the choice of the cut-off frequencies to ensure that only the noise components are 

filtered out. Additionally, the use of short-separation (SS) channels was demonstrated to 
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be effective in removing the extra-cerebral signals components (e.g., superficial skin 

blood flow) from long-separation channels (Gagnon et al., 2012). SS channels are created 

by placing a light source very close to a detector, usually at less than 1 cm distance, and 

record data from the extra-cerebral tissue. However, such superficial signal regression 

techniques (Funane et al., 2014, Gagnon et al., 2012) require a larger number of optodes, 

as each long separation channel must be combined with a short separation channel as 

close as 1.5 cm (Gagnon, Yücel, Boas, & Cooper, 2014). This is not fully possible with 

most of the commercially available wearable devices since the number of channels is still 

limited compared to conventional systems and are designed to maximize the investigation 

of the cortical tissue. Superficial regression can, to date, be performed with DOT devices 

(e.g., Genie from MMRA, and NIRSIT from Obelab, Table 2) that have a denser array of 

optodes, with the possibility of sampling from SS channels. Other approaches based on 

independent component analysis (ICA) (Kohno et al., 2007), principal component 

analysis (PCA; Zhang Y. et al., 2005), Bayesan filtering (Scarpa et al., 2011) and anti-

correlation maximization (CBSI; Cui, Bray, & Reiss, 2010) have been proposed as well. 

Currently, the most effective methodology able to separate systemic components from 

fNIRS cortical signals (Scholkmann et al., 2014) is to combine fNIRS measurements with 

systemic physiological data (e.g., mean blood pressure, heart rate, scalp blood flow). 

These systemic signals can be e.g. used as additional regressors in the GLM analysis of 

fNIRS data (Tachtsidis et al., 2010; Kirilina et al., 2012) or combined with ICA to identify 

the components to remove (Patel, Katura, Maki, & Tachtsidis, 2011). Only one of the 

studies we reviewed (Pinti et al., 2015) monitored changes in heart rate and breathing 

rate, and none included SS channels signal regression or PCA/ICA approaches. However, 

we recommend measuring physiological signals alongside fNIRS for a more effective 
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reduction of systemic interferences. In fact, thanks to the feasibility of fNIRS for 

multimodal monitoring, this can be easily performed through the use of wearable 

physiological monitors (e.g., chest straps; Pinti et al., 2015) that do not interfere with the 

optical equipment and with participants’ movements.  

 

4.3. Statistical analysis 

 Concerning the statistical analysis of fNIRS data, the most common method to 

infer functional brain activity from fNIRS signals is to use averaging or GLM approaches 

(see Tak & Ye (2014) for a review). Both methods require the knowledge of the timeline 

of events, which are pre-established and known in conventional experimental protocols 

structured as typical block- or event-related design paradigms. However, the analysis is 

not so immediate in case of unstructured experimental protocols, where brain activity is 

continuously monitored with minor control over the presentation of stimuli. For instance, 

in the work by Pinti et al. (2015), functional brain activity over the PFC was measured 

during the execution of an unstructured prospective memory task. In that case, 

participants were asked to respond and “fist bump” in greeting particular targets (either 

certain people or stationary objects) located in the testing area. However, the onsets of 

functional events associated with those actions were not pre-established as in typical 

block or event-related design experiments, and were very difficult to identify from the 

analysis of video recordings of participants’ behaviour. In fact, the peaks of hemodynamic 

responses (i.e., increase in HbO2 and decrease in HbR) are expected to occur 6 s after 

the stimulus onset (Scholkmann et al., 2014); however, non-synchronous hemodynamic 

responses to the targets’ fist bumping were observed (Figure 6 A, arrows), where the 

HbO2 and HbR peaks were anticipated of 15 s.  
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Figure 6. Example of HbO2 and HbR signals referring to one participant undertaking 

the experiment described in Pinti et al. (2015) (A). Magenta lines represent the time point 

in which the participant fist bumped two targets in the experimental area. Panel B shows 

the resulting activation model resulting from the application of AIDE (black line; Pinti et 

al., 2017), corresponding to the best fit with the activation signal (red line). The 

corresponding boxcar (black line) and the identified event onsets (orange asterisks) are 

illustrated in panel C. The estimated functional events occur 20 s before the participant 

reached the targets (magenta lines). 

 

This means that, in this case, functional events are more likely to occur when the 

participant spotted/approached the target (i.e., intention retrieval) rather than actually fist 

bumped it (i.e., intention realization). Recovery or prediction of the onset of the event 
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corresponding to the moment when the participant retrieves the intention is extremely 

difficult from the video recordings or even impossible. This is also true when brain 

activity is continuously monitored during everyday life activities as in the study by 

Balardin et al. (2017), and it is very hard to match fNIRS signal changes to participants’ 

behaviour. For instance, the authors investigated the inter-hemispherical functional 

connectivity using 1 min sliding window over the 4 hours continuously recorded fNIRS 

data. The spectrogram of the time-varying connectivity revealed a frequency peak of 

0.002 Hz that, however, could not be linked to any of the daily activities. To overcome 

the issues related to the identification of functional events in unstructured protocols, an 

alternative approach was proposed by Pinti et al. (2017). The authors developed and 

validated a novel algorithm based on the GLM fitting procedure, called AIDE (Automatic 

IDentification of functional Events) that recovers the onsets of functional events directly 

from fNIRS data with good accuracy. This method is applied to an ‘activation signal’ 

computed combining oxy- and deoxy- haemoglobin signals through the CBSI approach 

(Cui et al., 2010), in order to work on one signal containing information on both HbO2 

and HbR, reducing at the same time the impact of systemic interferences. Functional 

events (both the onset and duration) are determined identifying the activation model (i.e., 

the convolution of a boxcar representing the timeline of the events with the hemodynamic 

response function) that gives the best fit with the activation signal (Pinti et al., 2017). 

AIDE thus takes the opposite approach than conventional neuroimaging analysis 

techniques, and does not make any assumption on the timings of functional events. In this 

way, no hypotheses and assumptions have to be made, and functional events can be 

identified also in case of experimental protocols with no particular structure. In Figure 6 

B-C, are presented the results of the application of AIDE to the example of Figure 6 A. 



 

 

 

 

40 

More precisely, Figure 6 B shows the activation model (black line) giving the best fit with 

the activation signal (red line) that best describes the occurrence of functional trends (i.e., 

increase in the activation signal). The corresponding boxcar, representing the timeline of 

functional events, is reported in Figure 6 C (black line). In agreement with the visual 

inspection of signals that suggested anticipated hemodynamic responses, functional 

events (Figure 6 C, orange asterisks) actually happened 20 s before the participant 

reached the targets (Figure 6 C, magenta lines). This confirms that functional events occur 

during the intention retrieval process rather than in correspondence of the intention 

realization.  

 To increase the strength of the statistical inference results and to formulate more 

accurate conclusions, we also recommend reporting results for both HbO2 and HbR. 

In fact, functional activation corresponds to an increase in HbO2 and decrease in HbR 

(Obrig et al., 2000). Changes in oxyhemoglobin are very often used as the marker to 

assess functional activity because of its high-contrast changes. However, this signal has 

been  demonstrated to be strongly influenced by systemic changes (Kirilina et al., 2012), 

and can give rise to global and poorly localized hemodynamic responses (Zhang X., 

Noah, & Hirsch, 2016). On the contrary, HbR is less affected by confounding factors 

(Kirilina et al., 2012) and a more robust indicator of brain activity, giving more localized 

and specific results (Hirsch, Zhang X., Noah & Ono, 2017). 

 

5. Discussion 

 Over the last few decades, fNIRS has rapidly become a powerful method to image 

brain activity and investigate cognitive functions that cannot be studied in artificial 

contexts such as an fMRI scanner (e.g., social interactions (Hirsch et al., 2017), motor 
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control (Herold et al., 2017), neurodevelopment (Lloyd-Fox, Blasi, & Elwell, 2010)). The 

boundaries of these neuroscientific investigations can now be further extended thanks to 

the availability of wearable fNIRS instrumentation (Quaresima & Ferrari, 2016), 

allowing the monitoring of brain functioning in even more ecologically-valid scenarios 

and in outdoor environments (Balardin et al., 2017; McKendrick et al., 2016; McKendrick 

et al., 2017; Pinti et al., 2015) with mobile participants. In fact, these systems are 

miniaturized, more portable and thus lighter respect to conventional fNIRS devices, 

thanks to the absence of heavy and long optical fibres. Participants are now allowed to 

move and walk more freely in the environment without remarkable physical restraints 

usually imposed by standard instrumentations. This new class of devices was firstly 

introduced to the market less than 10 years ago (Quaresima & Ferrari, 2016), but only 

over last couple of years their use in more naturalistic situations and unconstrained 

environments is increasing. With this review, we aimed to givean overview of the state-

of-the-art of the application of this novel wearable fNIRS technology in cognitive 

neuroscience, with participants freely moving in the environment while engaged in a 

cognitive task. 

 To date, most of the studies were conducted in conventional laboratory settings, 

and involved the monitoring of PFC hemodynamics during a dual-task walking test 

(Table 2) with basic cognitive tasks (e.g., N-back task, digit span, verbal fluency task, 

serial subtractions, playing a game on a smartphone). Experimental protocols were 

structured as typical block-designed paradigms, and common statistical inference 

approaches (e.g., averaging, GLM; Tak & Ye, 2014) were employed to analyse fNIRS 

data (Table 5). Nevertheless, even though these studies adopted standard approaches for 

neuroimaging, they have contributed some major findings. First, they have demonstrated 
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the feasibility of wearable fNIRS in assessing functional brain activity to tasks performed 

during walking. This sets the basis for future applications in real-world contexts since we 

continuously carry out dual-task walking (DTW) actions in our everyday life.  Second, 

the new class of fNIRS devices are well tolerated not only by healthy adults, but also by 

patients with neurological deficits and mild cognitive impairment. This opens the way to 

new applications in clinical settings such as for neurorehabilitation. Third, it was proven 

that the new class of fNIRS devices are able to investigate the interplay between gait and 

higher cognitive and cortical control mechanisms in case of clinical patients. For instance, 

this is particularly important in the case of Parkinson’s disease as the monitoring of these 

patients during DTW tasks can help in explaining their difficulties in performing two 

tasks at the same time or gait failures in everyday life (Maidan et al., 2016). Research on 

walking is not only relevant in clinical populations. In our modern society, using 

smartphones while walking has become ubiquitous. Takeuchi et al. (2016) explored the 

cognitive-motor interference that can lead to increased risk of falling. Participants had to 

complete a game on their phone while walking and the investigators measured PFC 

activity using a wireless fNIRS device. This study further highlights the efficacy of 

wireless fNIRS in an ecological valid task, especially when investigating complex 

behaviour involving simultaneous motor and cognitive tasks. 

 The studies by Balardin et al. (2017), McKendrick et al. (2016, 2017), and Pinti 

et al. (2015) were conducted in outdoor environments and in situations mirroring 

everyday life contexts. McKendrick et al. (2016, 2017) took a neuroergonomic approach 

to assess mental workload and situation awareness while following a route in real-world 

scenarios. To this goal, the authors employed a block design functional protocol and 

fNIRS data analysis could be carried out through approaches commonly used in the 
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analysis of neuroimaging data, such as block averaging (Tak & Ye, 2014). However, this 

is not the case of unstructured experimental protocols, such as those used in the studies 

by Pinti et al. (2015) and Balardin et al. (2017), where continuous monitoring and no 

stimuli repetitions were adopted instead. Alternative approaches must be taken, such as 

using AIDE (Pinti et al., 2017) to recover and identify functional events directly from 

fNIRS data with no a-priori assumptions. Whilst some precautions related to the use of 

fNIRS in challenging situations need to be taken into account (see Section 5), these 

studies have demonstrated the feasibility of wearable fNIRS in effectively monitoring 

functional brain activity on people freely moving in outdoor settings while carrying out 

tasks as they would normally do in real life. 

 

6. Future directions 

 In this section we describe some of the possible applications in the field of 

cognitive neuroscience that we believe they would benefit the most from the use of 

wearable fNIRS.  

 

The new neuroscience of TWO:  Hyperscanning with fNIRS 

 One clear advantage for fNIRS as a technique for the study of human brain-

cognition relationships is in the study of social interaction. This is because the typical 

environment of e.g. a MRI or PET scanner precludes naturalistic or normal social 

behaviour, limiting the questions that can be asked, and raising the question of the 

ecological validity of the results.  

 It is widely appreciated that organizational principles of neural coding underlying 

interpersonal and social interactions are critically understudied relative to their 
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importance for understanding basic human behavior in both healthy and psychiatric 

conditions (Cui, Bryant, & Reiss, 2012; Frith, 2008; Hasson, Ghazanfar, Galantucci, 

Garrod, & Keysers, 2012; Schilbach, 2014). This barrier to investigation reflects the 

technical difficulties acquiring neural imaging data simultaneously on two or more 

interacting individuals. More precisely, there are two related challenges that face 

researchers currently working to understand the social brain, and both can potentially be 

ameliorated by the use of wearable fNIRS. These are (1) the ecological validity, and (2) 

the second-person neuroscience. While current fNIRS hyperscanning studies all use 

tethered systems with seated participants (Scholkmann, Holper, Wolf & Wolf 2013), the 

extension of hyperscanning to wearable fNIRS would allow us to monitor brain activity 

during a much wider range of social activities including dance, teaching, large scale 

collaborative tasks, even sports. For example, a recent study used wireless EEG to track 

brain-to-brain synchrony in classrooms (Dikker et al., 2017); similar studies with fNIRS 

might provide more detailed information on the engagement of different brain systems 

during teaching and learning interactions. 

 Recent investigations of interpersonal interactions between two or more persons 

now lead the way toward a new neuroscience of natural cross-person communication 

(Babiloni & Astolfi, 2014; Scholkmann et al., 2013). The investigation of dynamic social 

interactions between two individuals extends the fundamental unit of behaviour from a 

single brain to a two-brain unit, the dyad, and the focus is on communication protocols 

within the unit. Further to this, rapidly fluctuating facial expressions and subtle 

interaction-related movements that are transmitted and received during natural social 

interactions are poorly resolved by conventional experimental methods, thereby 

highlighting the significant advantages to hyperscanning (Schilbach, 2014). This 
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advantage is illustrated in several recent studies. For example, although the salience of 

eyes in communication is well acknowledged, the evidence is primarily based on single 

brain studies and viewing static pictures often with direct vs indirect gaze (Allison, Puce, 

& McCarthy, 2000; Ethofer, Gschwind, & Vuilleumier, 2011). However, a recent 

hyperscanning study of live eye-to-eye contact with fNIRS confirms a previously 

unappreciated critical role for real interaction via eye contact in natural interpersonal 

interactions (Hirsch et al., 2017). General linear models and functional connectivity 

findings within and across-brains revealed natural eye-to-eye effects greater than viewing 

static pictures of faces. These neural differences include canonical language regions, and 

suggest that eye-to-eye contact engages active neural systems associated with social 

engagement. The advantages of real-time hyperscanning in the context of the interactive 

brain hypothesis promise a new level of understanding of the neural processes that 

underlie social behaviour. Cross-brain synchrony between specific neural regions may 

become foundational hallmarks of interpersonal communication that enable a new 

window of opportunity to investigate social connections. For example, indices of 

affiliation, conduits for emotional contagion, diagnostic indicators of developmental 

social disorders and psychiatric conditions such as depression, anxiety and schizophrenia, 

may be developed and understood using hyperscanning in natural situations. These 

foundational findings and the forward trajectories are early entry points toward a new 

neuroscience of TWO that emerges from hyperscanning based on fNIRS. 

 

fNIRS and Virtual Reality (VR) 

 A further benefit of fNIRS is that it can potentially be combined with virtual 

reality (VR) or augmented reality to give full experimental control of a participant’s 
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experience in a dynamic environment. Common VR headsets (e.g., Oculus Rift) can be 

modified to combine with an fNIRS frontal cortex recording system, or fNIRS can be 

used in conjunction with a CAVE VR system in which the virtual environment is present 

on all the walls surrounding the participant and is seen in 3D with 3D glasses. Studies in 

fMRI examined how participants in VR respond to threat stimuli (McCall, Hildebrandt, 

Bornemann & Singer, 2015) and if they show prosocial behaviour in an emergency (Pan 

& Slater, 2011). If these VR scenarios were combined with fNIRS, we could understand 

the neural mechanisms underlying these behaviours.   

 

fNIRS as a tool of driving research 

 The potential of fNIRS is also particularly striking for everyday behaviours that 

simply cannot be investigated in the laboratory, such as driving a car. Liu, Pelowski, 

Pang, Zhou, and Cai (2016) reviewed fNIRS as a tool for driving research, evaluating 

different models of fNIRS devices, paradigms employed and key findings, as well as 

comparing to fMRI/EEG research. While various studies used fNIRS in driving 

simulators, others used fNIRS in real cars (see Liu et al. (2016) for a review). fNIRS 

allowed the investigation of various risk factors in driving such as fatigue, distraction, 

ageing (for further details see Liu et al., 2016). The authors are convinced that fNIRS 

proved itself as a useful method in driving research. Further research can address changes 

in brain activations in other regions than PFC, such as temporal cortex, parietal and pre-

motor areas. Moreover, other risk factors can be explored, such as inexperience, 

unexpected events, distractions, alcohol and with passengers. Lastly, the authors highlight 

the recent introduction of time-course measurements, which will allow exploring real-

time, dynamic activation changes during driving.  
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fNIRS for neuroeconomics and neuroergonomics research 

 Other applications could involve multimodal monitoring in everyday life contexts. 

Kopton and Kenning (2014) evaluated the potential of fNIRS in neuroeconomics 

research. They argue that the interdisciplinary research field of ‘neuroeconomics’ was the 

result of investigating neurophysiological processes of economic decision making using 

methods such as fMRI, EEG, electrodermal activity (EDA) and eye-tracking. However, 

recent challenges in neuroeconomics necessitate measuring situational factors outside the 

laboratory and in the ‘real-world’. These methodological demands can only be met with 

flexible and mobile technologies such as wearable fNIRS. The review describes not only 

lab-based experiments using wireless fNIRS with high ecological validity, but also 

evaluate the reliability of wireless fNIRS in field experiments (Kopton & Kenning, 2014). 

The authors conclude that even though few neuroeconomic studies employed mobile 

fNIRS to date, the fruitfulness of fNIRS in neuroeconomics outside the laboratory is 

irrefutable. 

 Additionally, neuroergonomics would massively benefit from the use of wearable 

fNIRS on mobile participants. Neuroergonomics is defined as the study of the human 

brain functioning during physical or cognitive activities at work and in everyday life 

settings (Parasuraman, 2011). This discipline integrates theories and models from 

different fields, such as ergonomics and neuroscience, to investigate the relationship 

between brain functions and technologies and settings in complex daily activities (Mehta 

& Parasuraman, 2013; Mandrick, Chua, Causse, Perrey & Dehais, 2016). It also aims to 

assess and monitor mental workload in everyday life situations in order to reduce human 

errors and mental workload while increasing human performance (Mandrick et al., 2016). 
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Neuroergonomics is different from conventional neuroscience as it investigates cognition 

in response to work, and requires the possibility to measure brain activity in naturalistic 

environments such as in the workplace (Mehta & Parasuraman, 2013). Therefore, 

conventional neuroimaging techniques such as fMRI and PET are not well suited for 

neuroergonomics research in everyday life scenarios given the physical restrictions that 

they impose on participants. On the contrary, wearable fNIRS can help in overcoming 

these issues, allowing the monitoring of brain activity on freely moving subjects. This is 

particularly important in neuroergonomics, as stated by Mehta and Parasuraman (2013), 

as bodily movements are necessary for physical ergonomics studies and for research on 

embodied cognition that requires people to move and interact with real-world 

environments. 

 

fNIRS for the study of prefrontal cortex function 

 There is another sizeable subfield of cognitive neuroscience where the necessity 

is just as great but perhaps less immediately obvious. This is the study of prefrontal cortex 

function. The arguments around this topic are quite complex, and have emerged from 

over 100 years of research. But we will try to summarise it here very briefly. The starting 

point is that most theorists agree that the prefrontal cortex supports a range of mental 

processes which operate in a ‘supervisory’ (Shallice, 1988) or ‘executive’ fashion over 

other processes which are more ‘informationally encapsulated’ (e.g. Coltheart, 1999). 

Informational encapsulation means that a cognitive system is relatively dedicated to 

affecting a particular behaviour or dealing with a particular type of stimulus. 

Informationally encapsulated mental resources, such as basic visual, motor, language or 

sensory processing and so forth, enable ‘automatic processing’ (Schneider & Shiffrin, 
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1977), that is fast and well-rehearsed. By contrast, many of the mental processes that are 

thought to be supported by prefrontal cortex operate in a slow ‘controlled processing’ 

fashion. This executive processing takes several forms, and operates across a wide range 

of situations, but an overall aim of the executive system is to deal with novel or difficult 

situations, and create new ways of behaving to deal with them (see Gilbert and Burgess 

(2008) for an introduction to executive function theory). Successful operation of the PFC 

executive system will mean that the next time that situation is encountered the individual 

will find it less novel, and their behavioural response will be quicker and less effortful, 

since they will now know what to do. In this way, the job of the prefrontal cortex 

executive system is, in effect, to make itself redundant. The principle here is easy to 

understand. But what might be less obvious is that studying such a cognitive system 

presents very specific methodological challenges (for review see Burgess, 1997). For 

instance: (1) the construct validity (i.e. the degree to which you are measuring what you 

intend to measure) of a cognitive task that intends to elicit executive processing typically 

decreases with the number of trials that are given. So, multiple repetition of the same 

problem or stimuli as is common in neuroimaging (or psychometric) studies risks missing 

the critical processing that one wishes to detect. (2) Construct validity can also be 

seriously compromised by putting the participant in a situation which directly signals to 

the participant that a ‘controlled processing’ mode should be entered. This is because one 

of the roles of prefrontal cortex processes is to monitor the environment and switch into 

‘controlled processing’ mode if required. This kind of signal tends to be given if you put 

a participant in highly unfamiliar – perhaps even slightly intimidating - environment. This 

may be one reason why some executive tasks that mimic ‘real-world’ situations were 

shown to be more sensitive in detecting frontal lobe dysfunction in neurological patients 
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than those that are administered in the clinic and are quite confrontational in their format 

(see Burgess et al., (2006) and Burgess and Stuss (in press) for review). (3) A related 

feature is that some subregions of PFC (especially rostral PFC) are specifically involved 

in dealing with ‘open-ended’ situations, i.e. problems where there are many possible 

solutions and one has to decide for oneself which one to take. (4) Further, much of the 

processing that PFC supports is ‘stimulus-independent’, i.e. is not strongly linked to the 

presentation of a stimulus (Gilbert, Frith & Burgess, 2005). An extreme example is mind-

wandering. But there are many other forms of stimulus-independent thought, such as 

maintaining an intention to act in the future while being occupied with another task 

(known as prospective memory). These four features of situations which tap processing 

supported by the prefrontal cortex (novel, not clearly signalling that controlled processing 

is required; open-endedness, and requiring stimulus-independent thought) are very 

common features of situations in everyday life. But they are not typically strong features 

of a neuroimaging experiment where an experimenter asks a person to lie down in a 

scanner, concentrate on what they are about to be shown, and then are shown a series of 

near-identical stimuli to which a very limited number of responses are instructed to be 

made. Compare that with the richness of these four features in the situation where a person 

is going shopping in a mall that is unfamiliar to them, where they have to decide for 

themselves what is best to buy and where, remembering to carry out many different 

errands while they are there, and e.g. remembering not to exceed the parking meter time 

allowance. For these reasons, in the field of human neuropsychology, naturalistic tasks 

with good ‘ecological validity’ were developed for use in detection of executive 

dysfunction in neurological patients with frontal lobe damage (e.g. Shallice & Burgess 

(1991); Castiel, Alderman, Jenkins, Knight, & Burgess (2012)). Not only has this had 
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obvious clinical benefit in terms of being able to quantify deficits which could previously 

not be measured, but it also led to several theoretical discoveries (e.g. the role of rostral 

PFC in multitasking, prospective memory, and time perception; see Burgess & Wu (2013) 

for review). The new developments with fNIRS offer the possibility of following an 

analogous path in moving from measurement in the clinic or laboratory, to measurement 

in “real life”, thus permitting much more accurate measurement of the processes of 

interest, with the attendant promise of new discoveries about the functions that the frontal 

lobes support. 

 

7. Conclusion 

 Over recent years, the focus of cognitive neuroscientists shifted significantly 

towards the monitoring of brain activity in ‘real life’, especially when investigating those 

cognitive functions that might be difficult to study in a highly artificial experimental 

environment. Therefore, a neuroimaging method that allows us to monitor brain activity 

actually in a naturalistic environment is an obvious starting point, and matters of construct 

validity and ecological validity subsequently become a secondary concern. We now have 

the possibility to monitor brain activity in everyday life thanks to the availability of new 

instruments such as wearable fNIRS systems. In addition, new methods were developed 

that we can use to analyse fNIRS data recorded during naturalistic experiments. Whilst 

these novel techniques provide the capacity to measure effectively functional brain 

activity in more ecologically-valid contexts, careful consideration needs to be taken when 

using wearable fNIRS. For instance, the impact of systemic interferences is more 

pronounced in freely moving subjects. To date, the technology is also still limited by the 

degree of head coverage and whole-head measurements cannot yet be performed.  
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 In summary, the reviewed studies laid the foundations to future neuroscientific 

investigations with wearable fNIRS devices in more ecologically-valid contexts and in 

outdoor environments, starting from the basics and demonstrating the feasibility of the 

new generation of wearable fNIRS with a series of proof-of-principle experiments. 

Having demonstrated the strengths and the limitations of this new technology, we believe 

that wearable fNIRS can find application in many different fields, addressing questions 

that cannot be investigated with previous technologies. It seems possible now with recent 

technological and conceptual developments in fNIRS that neuroimaging for cognitive 

neuroscience can now move ‘from lab to life’. 
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