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Although robots are becoming an ever-growing presence in society, we do

not hold the same expectations for robots as we do for humans, nor do we

treat them the same. As such, the ability to recognize cues to human animacy

is fundamental for guiding social interactions. We review literature that demon-

strates cortical networks associated with person perception, action observation

and mentalizing are sensitive to human animacy information. In addition, we

show that most prior research has explored stimulus properties of artificial

agents (humanness of appearance or motion), with less investigation into knowl-

edge cues (whether an agent is believed to have human or artificial origins).

Therefore, currently little is known about the relationship between stimulus

and knowledge cues to human animacy in terms of cognitive and brain mechan-

isms. Using fMRI, an elaborate belief manipulation, and human and robot

avatars, we found that knowledge cues to human animacy modulate engage-

ment of person perception and mentalizing networks, while stimulus cues to

human animacy had less impact on social brain networks. These findings

demonstrate that self–other similarities are not only grounded in physical fea-

tures but are also shaped by prior knowledge. More broadly, as artificial

agents fulfil increasingly social roles, a challenge for roboticists will be to

manage the impact of pre-conceived beliefs while optimizing human-like design.
1. Introduction
Detection and recognition of other agents is a necessary ability across species. It is an

integral pre-requisite for social interaction: one must accurately identify others in

order to appropriately interact with them. For instance, one would not expect a

robot to offer the same opportunities for social interaction as a human. Considering

the predicted rise of artificial agents in society performing tasks alongside humans

in hospitals, care homes and schools [1], it will become increasingly important

to distinguish between animate agents (e.g. humans) and inanimate agents

(e.g. robots). Robots can act in the world by moving and achieving goals, but they

are not sentient or intentional. Indeed, a key factor for classifying other agents is

the perception of animacy—the presence of life in others. The distinct way that

robots and humans look and move as well as what we know about their origins

offer important cues to animacy [2]. As such, a key question for social cognition

and social neuroscience research pertains to understanding the cognitive and

neurobiological mechanisms that enable us to recognize animacy in other agents [3].

(a) The neuroscience of social perception and cognition
The neuroscience of social cognition is concerned with how the brain manages

social interactions with others [4]. Several distinct brain circuits have been
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Figure 1. Social brain circuits. mPFC, medial prefrontal cortex; TP, temporal poles; Prec., precuneus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; TPJ,
temporoparietal junction; pSTS, posterior superior temporal sulcus; FG, fusiform gyrus; OT, occipitotemporal cortex. The mirror neuron system and pSTS form the key
nodes of the action observation network.
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identified that process elements of our social worlds, three of

which are of particular relevance to the current study

(figure 1). Person perception research has shown how sen-

sory systems are sensitive to the presence of conspecifics in

the environment [5]. For instance, patches of cortex in the

ventral visual stream including fusiform and occipitotem-

poral gyri respond preferentially to images of social stimuli

(faces and bodies) compared to non-social stimuli (houses

and cars) [6,7]. Accumulating evidence suggests the ventral

visual stream contributes to understanding identity through

processing physical appearance, such as facial features,

body shape and posture [5,8].

Another form of social perception involves observing

others moving through the environment and interacting

with objects. Brain regions responding to the observation of

others in action include posterior temporal gyri, inferior par-

ietal lobule and inferior frontal gyrus [9–11]. The frontal and

parietal responses are consistent with research into the mirror

neuron system discovered in monkeys, which shows similar

responses to performed and observed actions [12]. One domi-

nant theory argues that this frontoparietal network enables

action understanding through simulation by mapping

observed actions onto the observer’s own motor system [13].

Simply coding the physical characteristics of other agents

and their movements would not, however, be sufficient to

understand the meaning of their actions. It is also necessary

to make inferences about information one cannot see, such as

others’ beliefs, desires, attitudes and traits [14]. A third strand

of social cognition research—mentalizing—aims to delineate

the cognitive and brain systems integral to representing such

mental states of others [15]. Brain circuits spanning the medial

prefrontal cortex (mPFC), temporoparietal junction (TPJ), tem-

poral poles and precuneus are consistently engaged when

inferring and evaluating mental states and are collectively

known as the theory of mind network [4,15]. The ability to

draw inferences about underlying intentions helps us to predict

what another individual may do next and helps to regulate

social interactions [3,16]. Together, the studies highlighted

in this section have identified discrete brain circuits that sub-

serve aspects of social perception and interaction. It is less

clear, however, how social information is organized beyond a

social–non-social distinction.

(b) The ‘like-me’ hypothesis
One dominant model in social cognition states that under-

standing the similarity between self and other is a basic

principle of social cognition and that humans have developed

to seek out self–other equivalence [17,18]. This account, known

as the ‘like-me’ hypothesis, further proposes that actions
performed by oneself and another are represented in

common cognitive codes [17]. At the core of the ‘like-me’

hypothesis is the proposal that cognitive and brain mechan-

isms have been shaped to show sensitivity to information

that is physically or cognitively similar to one’s own makeup.

This view is consistent with the biological imperative to

detect similar others as a foundation for successful navigation

of the world [3].

One approach to test predictions that follow from the

‘like-me’ hypothesis has been to vary cues to human ani-

macy. In such studies, the idea is that the more human-like

an agent is perceived, in terms of physical appearance and

intentionality, the more it is considered to be ‘like me’.

These studies have fallen into two main camps based on

the type of cues to human animacy under investigation.

One camp has manipulated stimulus features, such as what

an agent looks like or how it moves. The second camp has

manipulated knowledge cues to animacy, such as whether

an observer believes an agent to be human or not. Both cue

types are of clear relevance to the study of social perception.

Humans move in a particular way, for instance using a mini-

mum jerk trajectory, and have a particular form (i.e. head

above a torso with limbs). Such distinctive physical features

can be diagnostic of a human presence. Likewise, knowledge

cues also matter for interpreting human animacy. If you

know the gorilla across the street is actually a man in a cos-

tume, your perception of the social environment would be

markedly different from if you were not aware of this fact.

In the following, we review behavioural and brain-imaging

studies that have manipulated stimulus cues and knowledge

cues to human animacy. Instead of an exhaustive review of all

studies exploring animacy detection, our focus is on brain

systems that index the distinction between human and

non-human agents.

(c) Stimulus cues to human animacy
The majority of research into cues influencing animacy per-

ception has focused on stimulus cues to human animacy,

such as what an agent looks like and how it moves. These

can be considered ‘bottom-up’ cues that are determined by

the visual appearance of the form and motion of an agent.

Many studies have investigated responses along the ventral

visual stream to depictions of human compared to non-

human stimuli, such as other animals or inanimate objects

[19,20]. Less research in the domain of person perception

has varied cues to human animacy by comparing human to

less human or robotic agents [21,22]. Gobbini et al. [21]

showed similar engagement of core face perception areas—

fusiform face area (FFA), occipital face area (OFA) and
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posterior superior temporal sulcus—when observing human

and artificial, robotic faces. In addition, core face and body

processing regions also respond to cartoon and schematic

depictions of faces and bodies [6,22]. Thus, the ventral

visual stream appears to be indifferent to animacy cues that

are based on physical form and responds to real faces and

bodies as well as face- and body-like forms.

In the domain of action perception, where agents are moving

in the world and sometimes interacting with objects, results are

mixed. The superior temporal sulcus has been shown to respond

to biological motion, even in the absence of a clear human form

[23,24]. Many studies have also compared the observation of

actions performed by humans and robots. A common result is

more engagement of sensorimotor brain regions collectively

termed the action observation network (AON) and facilitated be-

havioural responses when the agent is more human than not

[25,26]. For example, observing human form and motion

increased motor priming in an imitation task [27,28]. In addition,

right premotor cortex is engaged more during the observation of

reaching actions performed by a human hand compared to a

robotic claw [29]. These results are consistent with a self-

similarity bias and more AON engagement when an observed

agent is more human.

On further inspectionof theaction perceptionliterature, how-

ever, several studies show indifference in the AON to degrees of

stimulus-driven humanness or even a preference for non-human

stimuli. For instance, Gazzola et al. [30] failed to find any differ-

ence in brain responses when participants viewed actions

performed by a human or robotic hand. Likewise, Ramsey &

Hamilton [31] found that the left anterior intraparietal sulcus, a

core AON node, responded in a similar manner when partici-

pants observed a geometric shape or a human hand perform

goal-directed actions. Moreover, some studies show an even

greater response in the AON when perceiving non-human com-

pared to human visual cues [32,33]. In two experiments, Cross

and co-workers show greater engagement when watching rigid

robotic movement compared to natural free-flowing dance

moves that are more consistent with a human’s motor repertoire

[32]. This robust AON engagement was seen when participants

observed a human actor dancing and when observing a robot

toy animated to move in a similar manner. Therefore, the AON

was shown to be more sensitive to rigid, non-human-like move-

ment irrespective of animacy cues based on physical form.

Finally, Saygin & Stadler [33] found that middle temporal

gyrus and intraparietal sulcus are more sensitive to an android

(a robot dressed as a human) than a clearly presented human

or robot actor. Thus, the role of the AON in response to varying

stimulus cues to human animacy remains somewhat unclear.

Stimulus cues can also drive mental state reasoning and

engagement of the person knowledge or theory of mind net-

work. Heider & Simmel [34] showed that when people

observe simple shapes moving around as if they are interacting,

they ascribe human-like mental states to these shapes. Using the

same stimuli, Castelli et al. [35] demonstrated that these stimuli

also engage brain regions associated with mental state reason-

ing and social cognition (see also [36]). Social context can also

lead to mental state reasoning if stimuli are arranged in a

manner that makes a moving object look like a social agent

(such as an ice skater) rather than an inanimate object (like a

spinning top [37]). Finally, the same movie footage of social

interactions engages person knowledge networks more if real

video footage is viewed rather than modified versions that

have been made to appear ‘cartoonish’ [38]. Together, this
work suggests that stimulus cues alone can provide an input

to human-like mental state and animacy judgements.

(d) Knowledge cues to human animacy
Knowledge cues to animacy are based on beliefs about

an agent’s animate origins and can be task instructed or task

independent [39]. These can be considered ‘top-down’ cues

that are driven by prior information about the stimulus,

rather than by the visible form and motion cues. The impact

of knowledge cues can be seen most clearly when visually

identical stimuli are encountered across different conditions,

which vary knowledge about the agent’s humanness. Thus,

any differences in cognitive or brain function are cued by

information that is independent to the stimulus.

A growing body of behavioural evidence supports

the notion that beliefs about humanness influence social percep-

tion and interaction [39–44]. For example, Liepelt & Brass [45]

used an automatic imitation task and found that participants

showed stronger evidence of motor priming when movements

were thought to be made by a human rather than a wooden

hand. Using simplified moving dot stimuli, Stanley et al.
[41,42] showed increased behavioural interference together

with reports of stimuli appearing more human-like when

participants believed the stimuli originated from real human

movement compared to computer-generated movement.

Finally, using a manipulation where participants were required

to coordinate their actions with a physically present humanoid

robot, Stenzel et al. [43] found that participants were more likely

to represent the robot’s action if they believed that the robot’s

behaviour was based on a biologically inspired neural network

than when it was based on a computer program.

Neuroimaging research has also varied knowledge cues to

human animacy. Seminal fMRI studies of theory of mind used

the same stimuli for both ‘human’ and ‘computer’ conditions,

and varied participant instructions. The instruction ‘you are

playing with a human’ gave rise to robust activation in the

person knowledge network [46,47]. That is, the identical stimulus

increasingly activated social brain regions when participants

believed it originated in another person, not a computer.

(e) Combined stimulus and knowledge cues
to human animacy

Few studies have directly compared stimulus and knowledge

cues to human animacy. Press et al. [28] showed that stimulus

cues to animacy override knowledge cues when imitating

hand actions. By contrast, Stanley et al. [41] showed that

knowledge of how a moving dot was made (human versus com-

puter-generated) dominated perception of animacy compared to

its motion properties. Klapper et al. [40] showed that both types

of cue influence imitation of hand actions. Moreover, fMRI

results from the study by Klapper and co-workers showed that

right TPJ was engaged more during an automatic imitation

task when both stimulus and knowledge cues to human animacy

were present than when only one or neither cue to human ani-

macy was present [40]. This result supports the view that right

TPJ may be particularly sensitive to controlling interactions

with human agents [48,49].

A neuroimaging study by Stanley et al. [42] manipulated

both types of cue by investigating passive observation of

point-light animations. Point-light stimuli typically consist

of a sequence of moving dots, representing several joints on

http://rstb.royalsocietypublishing.org/
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an actor’s body, which give the appearance of human biologi-

cal motion [50]. This study found that knowledge of human

animacy engaged mPFC more than knowledge that the stimuli

were computer-generated. By contrast, human-like movement

did not engage social brain circuits more than less-human

movement. While emerging evidence suggests instances

when both stimulus and knowledge cues influence social per-

ception and cognition, the conditions and parameters that lead

to these biases remain largely unknown.

( f ) Summary and the current study
Evidence suggests widespread cortical engagement of distinct

social brain circuits for detecting and recognizing aspects of

human animacy during social interactions. Stimulus and knowl-

edge cues to human animacy engage person perception, action

observation and mental state reasoning networks. The picture

to date remains far from clear, but there appears to be some

kernel of truth to the suggestion that a mechanism of self-

similarity or ‘like me’ may operate across these studies. Many

questions remain unanswered, however. A growing number

of studies show indifferent or opposite brain or behavioural

responses to those consistent with a theory based on self-bias.

Moreover, few neuroimaging studies have directly compared

stimulus and knowledge cues to human animacy in the same

experiment to tease apart their relative contributions to detection

and recognition of other humans. Indeed, only one other study

to date has investigated action perception in this manner and

this study did not present visible human features, such as

faces or body parts, but instead used point-light displays of

simple actions [42]. Hence, it remains unclear how perception

of action is influenced by cues to human animacy, particularly

when physical form cues are visible.

The current study, therefore, directly compares stimulus

and knowledge cues to human animacy during the observation

of agents interacting with objects. Face and body cues are

manipulated as well as beliefs about the origins of such actions.

By doing so, we are able to investigate which cues to animacy

dominate perception of action as well as how these cues engage

social brain circuits. To support the ‘like-me’ hypothesis, we

would expect greater engagement of brain regions implicated

in action observation [25,29], mentalizing [42,46,47] and

person perception [25,26] when stimulus or knowledge cues

to human animacy (or both) are present. However, as a

number of recent studies suggest [21,30–33], we might also

find that parts of the social brain are not solely tuned to prefer-

entially respond to cues that are ‘like me’. Thus, the current

study will provide novel insights into aspects of the social

brain that are more or less responsive to features of an agent

that are ‘like me’ through careful manipulation of stimulus

and knowledge cues to human animacy.
2. Material and methods
(a) Participants
Twenty-nine physically and neurologically healthy young adults

were recruited from the fMRI Database of the Max Planck Institute

for Human Cognitive and Brain Sciences (Leipzig, Germany). All

were monetarily compensated for their involvement and provided

written informed consent in line with procedures set forth by the

local ethics board. Six participants were excluded from the final

analyses due to not believing the cover story (see Behavioural
Procedure and Task). The final sample included 23 participants (14
women, nine men; Mage ¼ 26.41 years, s.d. ¼ 3.02 years) who

believed the cover story. All participants were native German

speakers and right handed as measured by the Edinburgh

Handedness Inventory [51].

(b) Stimuli
Stimuli were created using POSER 7 three-dimensional animation

software (SmithMicro Software Inc, Santa Cruz, CA, USA) and

featured 10 object-directed actions (figure 2). Each video lasted

5 s. To create the stimuli, a human actor was first filmed perform-

ing each action, and these videos served as a model for creating

the Poser videos. Each action was mapped onto two different

avatars: a human male and a custom-designed robot (figure 2).

Each action was ‘filmed’ from the waist upwards and from

three different angles: centre, off centre and from the side (see

right panel of figure 2a). These procedures yielded 60 videos

in total (10 different actions � 2 different agents � 3 different

viewing angles).

(c) Belief manipulation
In order to manipulate knowledge cues to human animacy, partici-

pants were told the current study was commissioned by a major

German film studio for the purpose of examining how the

human brain processes two cutting-edge animation techniques:

human motion capture and computer-generated keyframe anima-

tion. Before taking part in the experiment, participants watched a

10-min custom-made and professionally produced ‘documentary’

that explained human motion capture and computer keyframe ani-

mation techniques in detail (see also [40]). Specifically, participants

learned that human motion capture involves recording real human

movement via sensors that are attached to the body, whereas

computer-generated keyframe animation involves a computer

algorithm that fills in intermediate frames of a movement between

predefined start and end positions. To further induce believability,

the Poser stimuli used in the actual experiment were briefly seen

in several parts of the cover story documentary to reinforce the

idea that both kinds of animation could lead to the types of stimuli

observed in the present study. In reality, however, all stimuli

used in the real experiment were made with computer keyframe

animation (the technique used by POSER software), which

closely approximates real biological motion. After watching the

documentary, participants were asked whether they had under-

stood how both techniques were used to animate avatars, and

whether they had any questions about the techniques before the

experiment started.

(d) Behavioural procedure and task
Participants’ task in the scanner was to carefully observe 240 video

stimuli during one functional run (each of 60 videos was repeated

four times in total during the experiment). The videos were

blocked into groups of five (with each group of five videos featur-

ing either the human or the robot avatar), and participants

observed a total of 48 blocks of five videos containing equal num-

bers of each agent form/belief pairing. Before each block of five

videos was played, a cueing screen appeared for 2 s that specified

that the following videos were made either with motion capture or

computer keyframe animation (figure 1b). The order of instruction

screens and the individual actions that made up each series of five

videos was pseudo-randomly assigned.

After each video, one of two questions appeared which partici-

pants were required to answer: either (i) how much did you like the

video you just saw? or (ii) how smooth did you find the movement

in the previous video? These questions were chosen for several

reasons. First, we wanted to determine how stimulus and knowl-

edge cues to human animacy influence perception of the stimuli

at a behavioural level. Second, two questions were chosen so that

http://rstb.royalsocietypublishing.org/
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participants could not anticipate the exact question they would be

asked, which required them to maintain attention to the stimuli.

Participants made their ratings on a 1–8 scale via a fibre-optic

scanner compatible button box. Following scanning, participants

completed a debriefing survey where they were explicitly asked

whether they noticed anything of note about the stimuli, as well

as what they believed the true goal of the study was. The six par-

ticipants (of the original sample of 29 participants) who raised

suspicions the stimuli seemed to be the same and only the instruc-

tions changed were excluded from the final sample. Upon

completing this survey, all participants were told the true nature

of the study and compensated for their time.

(e) MRI acquisition
Functional neuroimaging was acquired using a Bruker 3 Tesla Med-

spec 20/100 whole-body MR scanning system, equipped with a

standard birdcage head coil. Functional images were acquired con-

tinuously with a single-shot gradient echo-planar imaging

sequence with the following parameters: echo time (TE)¼ 30 ms,
flip angle ¼ 908, repetition time (TR) ¼ 2000 ms, acquisition band-

width 100 kHz. Twenty-four axial slices allowing for full-brain

coverage were acquired in ascending order (pixel matrix¼ 64 �
64; FOV ¼ 24 cm, resulting in an in-plane resolution of 3.75�
3.75 mm2, slice thickness ¼ 4 mm, interslice gap ¼ 1 mm). Slices

were oriented parallel to the bicommissural plane (AC-PC line).

The first two volumes of each functional run were discarded to

allow for longitudinal magnetization to approach equilibrium.

An additional 813–830 volumes of axial images were collected.

Geometric distortions were characterized by a B0 field map scan

(consisting of a gradient echo readout (32 echoes, inter-echo time

0.64 ms) with a standard two-dimensional phase encoding). The

B0 field was obtained by a linear fit to the unwarped phases of

all odd echoes. Following the functional run and field map scan,

24 two-dimensional anatomical images (256� 256 pixel matrix,

T1-weighted MDEFT sequence) were obtained for normalization

purposes. In addition, for each participant, a sagittal T1-weighted

high-resolution anatomical scan was recorded in a separate session.

The anatomical images were used to align the functional data slices

with a three-dimensional stereotaxic coordinate reference system.

http://rstb.royalsocietypublishing.org/
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( f ) Behavioural data analysis
Behavioural responses to the smoothness and liking questions

asked during the imaging task were combined to form a single

dependent variable and were analysed with a 2 (Agent Form:

human, robot) � 2 (Belief Manipulation: human motion capture,

computer-generated animation) repeated measures ANOVA.
ypublishing.org
Phil.Trans.R.Soc.B

371:20150075
(g) Imaging data analysis
Data were realigned and unwarped in SPM8 (Wellcome Depart-

ment of Imaging Neuroscience, London, UK) and normalized to

the Montreal Neurological Institute (MNI) template with a resol-

ution of 3 � 3 � 3 mm. Slice timing correction was performed

after realignment. Functional data were normalized to individual

participants’ T1 anatomical scans with a resolution of 3 mm3. All

images were then spatially smoothed (8 mm). A design matrix

was fitted for each participant, with each type of video (Human

with Motion Capture instruction, Human with Computer Anima-

tion instruction, Robot with Motion Capture instruction and Robot

with Computer Animation instruction), the belief manipulation

instruction screen and the question/response period modelled as

a boxcar function convolved with the standard haemodynamic

response function. The imaging analyses were designed to achieve

the following three primary objectives:
(i) Main effect of stimulus cues
First, we evaluated the main effect of visual cues to the socialness

of an observed agent. To achieve this, we compared observation

of actions performed by the human avatar to the robot avatar

(human . robot), as well as the inverse (robot . human).
(ii) Main effect of knowledge cues
We next assessed the main effect of our belief manipulation. We

evaluated brain regions more engaged when videos were believed

to have a human origin (motion capture . computer animation),

or when videos were believed to be computer-generated

(computer animation . motion capture).
(iii) Interaction between stimulus and knowledge cues
The third set of contrasts examined the interactions between

agent form and belief cues. The aim of these interaction analyses

was to determine the extent to which brain regions associated

with the action observation, mentalizing or person perception

networks are sensitive to specific pairings of stimulus-driven

and knowledge-based cues to human animacy. The first inter-

action contrast interrogated brain regions more engaged when

viewing congruent agent/belief pairings more than incongruent

pairings. An example of a congruent pairing would be a human

agent paired with motion capture belief or a robotic agent paired

with computer-generated belief, whereas incongruent pairings

would feature a human agent paired with computer animation

belief or the robotic agent paired with motion capture belief.

The inverse interaction examined brain regions more engaged

when viewing the incongruent agent/belief pairings compared

to the congruent pairings.

All neuroimaging analyses were evaluated at the whole-brain

level with a voxel-wise threshold of p , 0.005 uncorrected and

k ¼ 10 voxels [52]. Table 1 lists all regions that meet this

threshold. To most clearly illustrate all fMRI findings, t-images

are visualized on a participant-averaged high-resolution anatom-

ical scan. Parameter estimates (beta values) were extracted and

plotted for visualization purposes only for the two interaction

analyses. Anatomical localization of all activations was assigned

based on consultation of the Anatomy Toolbox in SPM [53,54].
3. Results
(a) Behavioural data
During scanning, participants rated each video on how smooth

they found the movement or how much they enjoyed watching

it. Due to an error in the MATLAB code, it was not possible

to separate ratings of liking and smoothness for the main

experiment. However, a follow-up behavioural study was

performed with 30 naive participants who performed the

identical task with the same stimuli. These data showed that

across all 120 stimuli/instruction pairings, ratings of liking

and smoothness correlated at r ¼ 0.53, p , 0.001. As prior

work suggests that both questions tap into the same psycho-

logical construct (i.e. we tend to like movements more that

are smooth [55], and participants’ ratings of movement

smoothness and liking strongly correlate in other experimental

settings [56]), we considered it valuable to examine behaviour-

al responses as a single combined variable. A repeated

measures ANOVA revealed that participants rated movements

they thought to be generated by human motion capture as

significantly smoother and more pleasing to watch than

videos they believed to be generated by computer animation,

F1,22¼ 21.28, p , 0.001 (figure 3). No main effect of agent

( p ¼ 0.39) emerged, nor was any interaction between belief

and agent manifest in the data ( p ¼ 0.79). These data suggest

that beliefs influence our dependent measure more than an

agent’s form.
(b) Functional imaging data
(i) Main effects of stimulus cues
The first imaging analyses investigated the extent to which

visual cues to human animacy influence action perception.

No suprathreshold clusters emerged from the human .

robot form contrast. The inverse contrast (robot . human

form) revealed engagement of bilateral ventral temporal

and occipital cortices, which survived correction for multiple

comparisons ( p , 0.005, FWE-corrected), as well as engage-
ment of portions of the left superior temporal gyrus and

hippocampus (table 1b and figure 4a). Similar to findings

reported by Cross et al. [32], this result suggests greater

high- and low-level visual engagement when observing a

robotic agent execute actions.
(ii) Main effect of knowledge cues
The next set of contrasts evaluated the impact of belief or

knowledge cues to human animacy on action perception.

The first contrast (human motion capture . computer key-

frame animation belief ) revealed activity within the right

inferior occipital and fusiform gyri. While these brain regions

did not survive correction for multiple comparisons, it is

nonetheless of interest to note that the cluster located

within the right inferior occipital gyrus closely corresponds

to functional localizations of the OFA (less than 6 mm

away [57]). Moreover, the peak of the cluster in fusiform

gyrus is 14 mm away from an average peak location of this

region when functionally localized, as reported by Spiridon

et al. [58]. It should be noted, however, that the fusiform clus-

ter identified in the present study is more anterior to most

reports of the FFA. Clusters also emerged in the left precu-

neus, as well as the left superior parietal lobule also

emerged from this contrast (table 1c and figure 4b). The
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Table 1. Main effects and interaction from whole-brain analyses. MNI coordinates of peaks of relative activation within regions responding to the main effects
of agent, collapsed across instruction (a: observing a human compared to a robot perform an action; and b: observing a robot compared to a human perform
an action), the main effects of belief manipulation, collapsed across agent (c: observing actions said to be made by human motion capture compared to
computer-generated animation; and d: observing actions said to be made by computer-generated animation compared to human motion capture) and the
interactions between agent form and belief manipulation (e: observation of congruent agent/belief pairings; and f: observation of incongruent agent/belief
pairings). Results were calculated at a voxel-level threshold of p , 0.005, k ¼ 10 voxels. Up to three local maxima are listed when a cluster has multiple
peaks more than 8 mm apart. Entries in bold denote activations significant at the false discovery rate cluster-corrected level of p , 0.05. HF, human form; RF,
robot form; MCB, motion capture belief; CGB, computer-generated belief.

MNI coordinates

region BA x y z t-value cluster size p-value

main effect: stimulus-based cues to socialness

(a) human . robot agent

no suprathreshold clusters emerged from this contrast

(b) robot . human agent

L fusiform gyrus 37 224 276 211 8.20 1422 <0.001

R fusiform gyrus 37 27 276 211 7.34 <0.001

L cerebellum lobule VIIa 221 282 220 7.18 <0.001

L superior temporal gyrus 22 245 21 28 3.65 26 0.001

L hippocampus 28 230 231 22 3.24 10 0.002

main effect: knowledge-based cues to socialness

(c) human motion capture . computer-generated animation belief

R inferior occipital gyrus 19 27 279 217 4.14 39 ,0.001

R inferior occipital gyrus 19 36 282 214 3.75 0.001

R fusiform gyrus 37 39 267 220 3.33 0.002

L precuneus 5/31 26 237 43 3.77 48 0.001

L middle cingulate cortex 5 26 249 46 3.42 0.001

R fusiform gyrus 36 33 243 28 3.48 27 0.001

L superior parietal lobule 7/39 30 270 46 3.24 11 0.002

(d) computer-generated animation . human motion capture belief

no suprathreshold clusters emerged from this contrast

interactions between stimulus- and knowledge-based cues to socialness

(e) congruent . incong pairings: (HF w/ MCB) þ (RF þ CGB) . (HF w/ CGB) þ (RF w/ MCB)

L posterior cingulate cortex 23 23 243 10 4.00 24 ,0.001

midline mid cingulate cortex 24 0 213 31 3.96 32 ,0.001

L middle cingulate cortex 24 23 222 25 2.89 0.004

L middle cingulate cortex 24 23 24 19 3.54 24 0.001

(f ) incongruent . cong pairings: (HF w/ CGB) þ (RF w/ MCB) . (HF w/ MCB) þ (RF þ CGB)

R inferior frontal gyrus 45 33 23 19 4.15 17 ,0.001

R cerebellum lobule VI 6 279 223 3.70 15 0.001
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response in the precuneus corresponds closely to responses

typically found with a theory of mind localizer task based

on comparing beliefs to physical stories [59]. The inverse

contrast (computer keyframe animation . human motion

capture) did not reveal any suprathreshold activations.

(iii) Interaction between stimulus and knowledge cues
The next set of analyses investigated the extent to which brain

regions associated with social perception are influenced by

the interaction of stimulus and knowledge cues to human

animacy. The first interaction examined congruent pairings

of agent and belief compared to incongruent pairings
((human form þmotion capture belief ) and (robot form þ
computer animation belief ) . (human form þ computer ani-

mation belief ) and (robot form þmotion capture belief )).

Three uncorrected clusters emerged along the midline cingu-

late cortex, including middle and posterior cingulate cortices

(table 1e and electronic supplementary material, figure A).

The parameter estimate plots reveal evidence for crossover

interactions for the two middle cingulate activations, while

the interaction within posterior cingulate cortex appears to

be driven most by a stronger response to the human agent

being paired with motion capture instructions compared to

computer animation instructions.

http://rstb.royalsocietypublishing.org/


subjective video ratings during fMRI

m
ea

n 
m

ot
io

n 
sm

oo
th

ne
ss

/
pl

es
an

tn
es

s 
to

 w
at

ch
 r

at
in

g motion capture belief

human robot
agent form

6.75

6.65

6.55

6.45

6.35

6.25

computer animation belief

Figure 3. Behavioural data from fMRI task. Plots illustrate mean ratings
reported by participants to questions interrogating how smooth participants
found the movements or how much they enjoyed watching them. A main
effect of belief was manifest, such that participants found those action
videos they believed to originate from human motion capture techniques
to be smoother and more enjoyable to watch than videos they believed
to originate from computer-generated animation. No other main effects or
interactions were observed.
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The inverse interaction evaluated brain regions more

engaged when observing incongruent compared to congruent

form and belief pairings ((human formþ computer animation

belief) and (robot form þmotion capture belief) . (human

form þmotion capture belief) and (robot form þ computer ani-

mation belief)). This contrast revealed two uncorrected clusters:

one in the right inferior frontal gyrus, and a second in the cer-

ebellum (table 1f and electronic supplementary material, figure

B). For this interaction, it is of note that the interaction present

within these two brain regions is driven by different stimuli

(see parameter estimates in electronic supplementary material,

figure B). Specifically, robotic agents paired with motion capture

instructions seem to drive the cerebellar region most strongly,

while the human agents paired with computer animation

instructions drive the inferior frontal gyrus region most.
4. Discussion
Prior research has revealed that many different cues to human

animacy engage brain networks associated with social cogni-

tion, while less is known about the relationship between

these cues. In the present study, we used video stimuli featur-

ing kinematically identical actions performed by a human or

robotic agent and an elaborate belief manipulation to test

the extent to which stimulus and knowledge cues to human

animacy influence perception. Behaviourally, participants

reported actions believed to originate from human motion cap-

ture to be smoother and more enjoyable to watch than those

believed to have computer animation origins, while differences

in agent form did not affect ratings. The neuroimaging findings

echoed this pattern, with knowledge cues to human animacy

showing subtle influence (at a liberal threshold) on brain

circuits implicated in social cognition.

We failed to find evidence that visual cues to human ani-

macy more strongly engage the action observation, person

perception or theory of mind networks than visual cues to a

robotic agent, as might have been predicted. In contrast, we

found a robust, cluster-corrected area of activation spanning

ventral temporal and occipital cortices when participants

observed actions performed by a robotic compared to
human-like agent. These findings raise questions about the

role played by stimulus cues to human animacy, while also

highlighting the influence of knowledge cues on social percep-

tion when perceiving identical agents and actions. Together,

they provide new insights into the supporting neural architecture

and behavioural consequences of social perception.

(a) Belief about humanness influences perception, as
shown by brain and behavioural responses

While some prior studies have failed to find evidence that

belief about the human origins of a stimulus can impact per-

ception [28], a growing body of evidence supports the notion

that beliefs about humanness influence the way we perceive

and imitate other agents [40–43,45]. Our results are consistent

with these findings as participants were more likely to report

actions supposedly originating from real human movements

as smoother and more pleasing to watch (questions that tap

into how natural or human-like an agent or action appears

[56]). Our findings also fail to demonstrate that differences in

agent form influence these ratings, which further suggests

that knowledge cues can dominate stimulus cues in explicit

evaluation of social features of an observed action [42]. A chal-

lenge for future behavioural research will be to systematically

investigate how knowledge cues to animacy impact different

facets of social cognition. To date, for example, perceptual

and imitative processes have been studied separately, and

the relationship between these key aspects of social cognition

and knowledge cues to human animacy remains unexplored.

At the neural level, our findings provide some evidence

that actions paired with a human- compared to computer-

generated belief lead to greater engagement of brain regions

associated with person perception and theory of mind.

Specifically, portions of the right inferior occipital gyrus

and fusiform gyrus responded more to the same stimuli

when they were paired with human motion capture instruc-

tions. Both regions are located in close proximity to patches

of cortex that are face selective including the OFA [57] and

fusiform face [58] and body areas [60]. It is of note that

these two brain regions associated with processing the

human face were modulated in this instance by social

knowledge, and not differences in stimulus-driven features.

Also important is the emergence of a cluster within the right

precuneus from this same contrast. The precuneus is consist-

ently implicated in theory-of-mind tasks and is believed to

play a role in explicit belief processing [61,62]. If these results

were to be replicated by future studies, they would suggest

that parts of the social brain network involved in perceiving

others’ physical features and reasoning about others’ minds

are engaged when viewing agents whose actions are believed

to have human origins. Revisiting the study by Stanley et al.
[42], these researchers varied the motion parameters of point-

light actions (ranging from veridical displays of the original

action to completely scrambled versions of each action),

and, as in the current study, they also varied instructions

(human- or computer-generated). For the main effect of instruc-

tions (human . computer), and similar to the present study,

Stanley and co-workers reported greater engagement of brain

regions associated with mentalizing. Consistent with Stanley

and co-workers’ interpretation of this finding [42], we propose

that based on believing that an agent is more human in

nature, greater demands are placed on extracting relevant cues

to support and evaluate this belief, changing the observer’s
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Figure 4. Main effects of agent form (stimulus) and belief manipulation (knowledge). Panel (a) illustrates brain regions more engaged when participants watched
actions performed by a robotic avatar compared to a human avatar. Panel (b) shows brain regions more engaged when participants watched videos they believed to
originate from human motion capture compared to computer animation. Full details of these findings are presented in table 1. STG, superior temporal gyrus; FG,
fusiform gyrus; IOG, inferior occipital gyrus; SPL, superior parietal lobule.
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perception of the social scene. In other words, it seems plausible

that visual inputs are matched against a human template more

in the human- than computer-belief condition. This process

engages theory of mind and person perception in combination.

This interpretation, however, remains speculative at this stage

and will require further research to test it thoroughly.
(b) Revisiting stimulus cues to human animacy and the
action observation network’s role in social
perception

In contrast to a number of previous studies [27,39,63,64], we

failed to find behavioural or brain-based evidence that stimu-

lus cues to human animacy enhance action perception relative

to non-human stimulus cues. Instead, we contribute further

support, which survives correction for multiple comparisons,

to a growing body of evidence that suggests that non-human

stimulus cues can lead to the same or even an enhanced

engagement of high- and low-level visual areas and the

AON [21,30–33]. Specifically, we add to the evidence that

social brain circuits including the AON are frequently

indifferent to stimulus cues to human animacy.

Although visually salient differences between the human

and robot avatar are apparent, the AON did not respond to

this difference in the present study. An exploratory analysis

of each stimulus form compared independently to an implicit

baseline revealed that observing the human or robot agent in

isolation resulted in widespread, robust engagement of bilat-

eral AON, fusiform and occipitotemporal brain regions. The

results of these simple contrasts help to rule out the possi-

bility that the lack of findings in the human . robot

contrast are due to a peculiarity of the human stimuli not

engaging such brain networks on their own. The present

findings could possibly be due to the fact that both agents

executed the identical goal-directed actions (cf. [30,31]) or

because the robot and human forms shared some features

(i.e. a head atop a torso with two arms). Even though the
human and robot forms were generated with the same CGI

package, one potential reason the AON might have failed

to discriminate between the agents might be because the

human form was slightly less human than a video of a real

person would be. Another possibility for why we found

greater engagement of brain regions associated with person

perception when observing a robot compared to a human

could be that these brain regions are engaged to assimilate

the robotic agent with a more familiar and predictable

human template. A similar idea was discussed by Cross

et al. [32] in light of finding more robust AON engagement

when observing robotic compared to human-like actions.

Recent work [65] lends tentative support to the idea that

greater engagement of occipitotemporal brain regions when

observing unfamiliar visual stimuli (such as the robotic

actions in [32] and the robotic agents in the current study)

might indeed be due to differences in predictability, as out-

lined by a predictive coding model of action perception [66].

Regardless of the reason for the absence of a difference in

AON engagement observed between human and non-human

stimulus cues in our study, the current findings suggest that

the importance of a human-like form to social perception

may have been overstated. Other factors such as top-down

beliefs [42,45] and bottom-up kinematic information [27] also

shape social cognition when perceiving and interacting with

others [67,68]. Our data help to redress the balance of how

much weight the AON assigns to self–other similarities on a

form-based, visual level. Future research investigating percep-

tion of human animacy may explore which social brain

mechanisms are specifically tuned to respond to the extent to

which a stimulus is perceived as being ‘like me’, and what

other complementary mechanisms might be at play [69,70].

Returning to the ‘like-me’ account of social cognition, the cur-

rent findings contribute to this view by demonstrating that

social brain circuits may be tuned to detect human animacy

based on knowledge cues that signal an agent to be ‘like me’.

While we fail to find behavioural or imaging evidence

demonstrating that visual cues to humanness influence

http://rstb.royalsocietypublishing.org/
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social perception, it should be noted that exploratory further

analysis of the human . robot form contrast (evaluated at

p , 0.01, k ¼ 10 voxels) revealed activity within the right tem-

poroparietal junction, centred on coordinates x ¼ 51, y ¼ 237,

z ¼ 27. While this finding provides weak evidence that brain

structures implicated in social cognition [59] might indeed be

more engaged when observing human compared to robotic

agents, we are reluctant to interpret this finding further due

to the lack of statistical strength. The clearer message to

emerge from the main effects of the present study is that top-

down belief cues to human animacy shape social perception

to a stronger degree than bottom-up visual form cues to

human animacy, with stimuli paired with human beliefs

associated with engagement of brain regions implicated in

person perception and theory of mind.

(c) Interactions between stimulus and knowledge cues
to human animacy

The design of the present study enabled us to address how

stimulus and knowledge cues to human animacy interact

during action perception. Findings from the contrast compar-

ing congruent with incongruent pairings of stimulus and

knowledge cues failed to show modulation of the action obser-

vation, person perception or mentalizing networks. Instead,

we report engagement of three uncorrected clusters spanning

the middle and posterior cingulate cortex. However, as this

finding was not predicted, we are reluctant to interpret it

further. The result from the incongruent pairings interaction

revealed an uncorrected cluster within the right inferior frontal

gyrus located in a similar coordinate space to recent meta-ana-

lyses of the AON [9,11]. One simple interpretation of this

finding, consistent with a rich literature on executive control,

is that viewing incongruent pairings of agent form and human-

ness belief requires greater attentional control than when

pairings are congruent [71]. Alternatively, it is possible that

increased engagement of this sensorimotor brain region

when viewing incongruent stimulus and knowledge pairings

relates to increased demands on motor simulation mechanisms

to reconcile human and artificial features of an observed agent.

In order to evaluate this necessarily speculative interpretation,

further research is required to replicate and more fully delin-

eate how stimulus and knowledge cues to human animacy

interact. If we take a step back and attempt to construct a

broader view of how the current study’s findings fit in to the

wider literature on the biological substrates of social perception

and social cognition, given that some findings do support the

‘like-me’ hypothesis [25–29], while others do not [30–33],

and the fact that not all reported results survive correction
for multiple comparisons, replication of these findings will be

important for future progress towards understanding how

we perceive animacy in other agents.
(d) Multiple routes to socialness and considerations
for social artificial agent design

The theoretical implications of the current study and research

reviewed in this paper extend beyond the laboratory and

serve to inform disciplines in addition to social cognition and

neuroscience, including robotics. Over the past decade, individ-

uals working to develop socially interactive artificial agents,

including robots and avatars, are taking an increased interest

in social cognition and social neuroscience research that exam-

ines the impact of ‘like-me’-ness on how we perceive and

interact with such agents [72–75]. An ongoing goal for robotics

designers has been to maximize the similarity of artificial agents

to humans, in terms of appearance and movement (while per-

haps attempting to circumnavigate the uncanny valley), in an

attempt to make particular artificial agents as ‘like me’ as pos-

sible [76]. However, findings from the current study and

considerations raised by related work suggest that how an

agent is perceived as being ‘like me’ can take many forms and

is not only dictated by how convincingly a robot looks or

moves like a human. Pre-conceived beliefs about robots will

impact their reception in the workplace, schools, care homes

and other social settings, and will undeniably shape how

effective human–robot interactions will be. Thus, human

knowledge about and attitudes towards robots will need to

be optimized as much as a robot’s physical form and motion

parameters. As such, roboticists and computer animators

stand to benefit from further dialogue and collaboration with

researchers investigating mechanisms of social perception and

their consequences for social interaction.
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